Чем определяется твердость костей
Чем определяется твердость костей
Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.
Химический состав кости и ее физические свойства.
Строение кости
Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон, т. е. система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы.
Распределение компактного и губчатого вещества зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют преимущественно функцию опоры (стойки) и движения (рычаги), например в диафизах трубчатых костей.
В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество, например в эпифизах трубчатых костей.
Таким образом, все внутренние пространства кости заполняются костным мозгом, составляющим неотъемлемую часть кости как органа.
Костный мозг бывает двух родов: красный и желтый.
Желтый костный мозг, medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.
В периоде развития и роста организма, когда требуются большая кроветворная и костеобразующая функции, преобладает красный костный мозг (у плодов и новорожденных имеется только красный мозг). По мере роста ребенка красный мозг постепенно замещается желтым, который у взрослых полностью заполняет костномозговую полость трубчатых костей.
Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum (периост).
Таким образом, в понятие кости как органа входят костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.
Чем определяется твердость костей
Подробное решение страница стр.100 по биологии для учащихся 9 класса, авторов Сапин М.Р., Сонин Н.И. 2014
1. Из чего состоит опорно-двигательный аппарат?
Опорно-двигательный аппарат человека состоит из костей скелета, их соединений и мышц.
2. Какие функции выполняет скелет?
Скелет выполняет следующие функции:
• Опорная (является местом прикрепления мышц);
• Кости туловища и конечностей являются рычагами, с помощью которых осуществляются движения тела в пространстве;
• Защитная (защищает внутренние органы от повреждения);
• Создает структурную форму тела, определяет его размеры;
• Кроветворная (в красном костном мозге образуются форменные элементы крови);
• Участие в регуляции минерального обмена (является депо солей фосфора и кальция)
3. Каков химический состав костей?
Кость имеет сложный химический состав. Сами костные клетки и коллагеновые волокна и белково-полисахаридные комплексы межклеточного вещества состоят из органических веществ; они составляют 30—35% сухой массы кости. Основную массу сухой кости (65—70%) составляют неорганические вещества. В основном это кристаллы кальциевых солей фосфорной и угольной кислот, ионы нитратов и карбонатов, составляющих межклеточное вещество. От органических веществ зависит эластичность и упругость кости, а от минеральных — твердость и хрупкость.
4. Какая ткань образует кость?
Кость образует соединительная ткань.
5. Какие бывают кости по форме? Приведите примеры.
По форме выделяют 4 типа костей:
• Трубчатые: длинные (плечевая, бедренная) и короткие (кости пясти, плюсны, фаланги пальцев);
• Плоские (тазовая кость, лопатка, кости мозгового отдела черепа);
• Губчатые: длинные (ребра, ключицы) и короткие (кости предплюсны и запястья);
• Смешанные (позвонки, кости основания черепа).
6. Как особенности строения губчатого и компактного вещества связаны с их функциями?
У каждой кости выделяют компактное и губчатое вещество. Особенно хорошо развито компактное вещество в тех костях и их частях, которые выполняют функции опоры и движения (тело длинных трубчатых костей). В компактном веществе костные пластинки имеют цилиндрическую форму, они как бы вставлены одна в другую. Такое трубчатое строение компактного костного вещества обеспечивает костям большую прочность и легкость. Они присутствуют в скелете конечностей и отвечают за их движение.
Губчатое вещество состоит из тонких, перекрещивающихся между собой костных пластинок и перекладин, образующих множество ячеек. Направление перекладин совпадает с линиями основных напряжений, поэтому они образуют сводчатые конструкции. Такое строение позволяет добиться от костей большей прочности. Они реже ломаются и трескаются, поэтому создают основной каркас человеческого скелета и создают и окружают полости, защищая их содержимое от внешних повреждений (череп, таз).
7. Большая берцовая кость при небольшой массе (около 0,5 кг) может выдерживать нагрузку до 1500 кг. Благодаря чему это возможно?
Такие возможности обеспечиваются строением данной кости. Наружный слой тела кости состоит из прочной компактной костной ткани, а внутренняя осевая часть состоит из губчатой костной ткани, между вставочными пластинками которой находится желтый костный мозг. Сама костная ткань обеспечивает способность выдерживать большие нагрузки, а ячеистость губчатой кости обеспечивает легкость кости.
8. Обобщите, чем определяется легкость костей; прочность костей.
Легкость костей обеспечивается ячеистостью губчатой костной ткани, а строение самих ячеек обеспечивает высокую прочность костей. Прочность также создает трубчатость компактного вещества. Прочность кости на излом (способность кости образовывать минимальный изгиб при поперечном воздействии и при этом не ломаться) обеспечивается тем, что кости являются одновременно и твердыми, за счет большого количества неорганических веществ, и эластичным, благодаря органическим веществам.
9. Сравните строение, расположение и значение красного и жёлтого костного мозга.
Расположение красного и желтого костного мозга меняется с возрастом. Тогда как кости новорожденных абсолютно все содержат в себе красный костный мозг, многие кости взрослых людей его утрачивают. У взрослых он остаётся локализован в ребрах, позвонках, костях черепа, таза, грудине и дистальных частях длинных костей. Он находится между пластинками коротких плоских костей, а также в концевых утолщениях (эпифизах) длинных трубчатых костей. В нем образуются клетки крови. Полости длинных трубчатых костей у взрослых людей заполнены желтым костным мозгом, который является неактивным и включает в свой состав большое количество жировой ткани. Желтый костный мозг представляет собой своеобразный резерв для красного костного мозга. При кровопотерях в него заселяются гемопоэтические элементы, и он превращается в красный костный мозг.
10. Как кости растут в длину и толщину?
11. Какие бывают соединения костей?
Соединения костей бывают:
• Подвижные или прерывные: соединения при помощи суставов (локтевой, коленный суставы);
• Полуподвижные или полупрерывные: соединение при помощи хрящей (межпозвоночные диски);
• Неподвижные или непрерывные: соединение срастанием костей (тазовая кость, состоящая из седалищной, лобковой и подвздошной) или при помощи швов (кости мозговой части черепа).
12. Каково строение сустава?
Сустав образуется концами соединяющихся костей (суставные поверхности), покрытыми гладкими суставными хрящами, причем на одной кости эта поверхность выпуклая (головка), а на второй вогнутая (впадина). Суставные поверхности костей охватывает суставная сумка, заполненная синовиальной (суставной) жидкостью, которая уменьшает трение между суставными поверхностями. Сустав укрепляется связками, лежащими внутри и вне суставной сумки.
13. Известно, что у детей кости более эластичные и упругие, чем у взрослых. Каковы причина и значение этой особенности?
В молодом возрасте и у детей кости более эластичные и упругие, так как в них преобладают органические вещества, это обеспечивает большую способность к росту костей в длину и толщину, а также быстрейшее заживление переломов. С возрастом органических веществ становится меньше, поэтому у пожилых людей кости более хрупкие и ломкие.
Научная электронная библиотека
3.3. Механические свойства костей скелета
Она ломается и разрушается, если поглощает слишком много энергии. Мягкие ткани абсорбируют намного больше энергии, но не разрушаются, так как более податливые. Нас, прежде всего, интересовал вопрос о биомеханических свойств кости с учетом ее анизотропии – неодинаковых механических свойств относительно продольной оси диафиза. Такая работа весьма важна, так как могут произойти дальнейшие нарушения целостности кости. Испытывали на сжатие образцы компактной костной ткани, выпиленные из средней трети диафиза бедренной кости мужчин, в продольном (0°) и поперечном (90°) направлениях в трех возрастных группах – 20–30, 40–50 и 70–80 лет. Образцы хранили в физиологическом растворе в замороженном состоянии. Минеральную плотность (МПК) образцов определяли на анализаторе минералов. В группе 40–50 лет МПК составляла 1,71 ± 0,09 г/см2, а в 70–80 лет – 1,58 ± 0,09 г/см2.
Параметрами биомеханических свойств служили предел прочности, модуль упругости, предел пропорциональности, относительные упругая деформация и разрушения. Учитывая, что кость является биологическим материалом, модуль упругости, предел пропорциональности и относительную упругую деформацию рассматривали как физиологические критерии, характеризующие скрытое деформационное состояние микроструктур кости до возникновения необратимых изменений, а предел прочности и относительную деформацию разрушения – как критерий перегрузки, так как выше предела пропорциональности появляются необратимые структурных изменения – фаза пластических деформаций. За счет их костная ткань приспосабливается к внешним воздействиям, изменяет структуру, форму и размер.
Анализ полученных данных показал, что снижение МПК в возрастной группе 70–80 лет на 8 ± 0,2 %, по сравнению с группой
40–50 лет, может приводить к серьезным изменениям как прочностных, так и деформационных свойств кости. В наибольшей мере изменялись модуль упругости (на 20 и 30 % соответственно для 0 и 90°) и относительная деформация разрушения (36 и 45 % для 0 и 90°). Предел прочности снижался на 15 и 18,6 % (для 0 и 90°), а относительная упругая деформация – на 10 и 16 %.
Результаты исследований свидетельствуют о том, что снижение МПК в кости после 70 лет приводит к глубоким изменениям
механических свойств костной ткани. Снижение модуля упругости, предела пропорциональности и относительной упругой деформации свидетельствует о том, что область функциональных нагрузок (0о) на кость снижается. Существует непосредственная зависимость между модулем упругости, характеризующим жесткость материала, и пределом прочности. Однако, в указанных возрастных группах снижение модуля упругости и предела прочности не было прямопропорциональным. Можно предположить, что изменение биомеханических свойств кости с возрастом связано не только со снижением МПК, но и качественным изменением коллагена, костного связующего вещества – мукополисахаридов и структурными изменениями в кости.
В процессе исследований определялась также поглощенная костью энергия и выражалась на единицу объема (Jm–3) или площади (Jm–2). У лиц до 30 лет поглощенная энергия составляла 2,8∙104 Jm–2, а к 90 годам ее величина уменьшалась в 2,8 раза.
Из рассмотренных материалов вытекает такое заключение: наибольшие изменения биомеханических свойств возникали на поперечном направлении. Они указывали на то, что кость теряет способность противостоять действию нефункциональных нагрузок, что может быть причиной спонтанных переломов.
Проведено также изучение механических свойств лучевых костей у 28 до гибели практически здоровых женщин в возрасте 40–80 лет. Кости были тщательно освобождены от периоста. Содержание минеральных веществ определено методом двуфотонной абсорбциометрии. Измерения сделаны на расстоянии 1 см от лучезапястного сустава. До исследования механических свойств образцы держали в замороженном виде при температуре –15 °С. Нагружение производили со скоростью 50 мм в мин. Испытание продолжалось несколько секунд. С возрастом статическая прочность уменьшалась однонаправленно с величиной минеральных веществ. В 40 лет величина нагрузки составляла 5,6 кН, а 90 лет – 2,6. Эластичность при испытании на разрыв не зависела от возраста и количества минералов.
Изучены также механические свойства лучевой кости у 37 людей уже на расстоянии 3 см от лучезапястного сустава. Перед исследованием образцы выдерживали в физиологическом растворе (0,9 %) 24 часа, что приближало их к состоянию ин виво. Между 16 и 90 годами абсорбция энергии удара кортикальным слоем бедренной кости уменьшалась в 3 раза. Это обусловлено снижением минерализации.
В позвоночнике при величине МПК в L1, равной 0,680 ± 0,037 г/см2,
предел прочности составляет 3195 ± 221 H, в L2 при МПК 0,736 ± 0,035 г/см2 – 3642 ± 259 Н, в L3 – 0,789 ± 0,036 г/см2 – 4022 ± 326 Н, L4 – 0,962 ± 0,039 г/см2 – 4749 ± 331 Н. Механическая прочность трабекулярной кости позвонка в 20–25 лет составляет у мужчин 85,5 ± 6,5 Н/мм2, у женщин – 77,8 ± 4,7 Н/мм2. В 46–50 лет эта величина уменьшается у мужчин в 1,8 раза, у женщин – в 2,0 раза. В 56–60 лет прочность более быстрыми темпами уменьшается у женщин (в 4,7 раза) по сравнению с мужчинами (3,2 раза). Дальнейшие глубокие изменения происходят в 61–70 лет: у женщин прочность снижается в 6 раз, у мужчин – в 3,6 раза. У мужчин в 71–80 лет дальнейшего снижения не происходит, а у женщин продолжает снижаться до 7,5 раз.
Обсуждение материалов. В течение последних 20 лет ряд исследователей пытался судить о возрастных изменениях во всем скелете косвенно путем определения плотности минералов в лучевой кости, содержащей в диафизе 96 % компактного вещества и поэтому, как полагали, отражающей изменения МПК во всем скелете. Аналогичен он между содержанием МПК в осевом скелете и в пяточной кости
[5, 6]. При исследовании в пользу такого суждения было то, что коэффициент корреляции между весом минералов в золе и при измерении на денситометре оказался достаточно высоким [3, 4]. Сухой вес кости в 3 года составляет 60,5 %, в 30–40 лет – 66,5, в 90 лет – 62,5 %. Это указывает на увеличение порозности кости. Удельный вес (плотность) кости в 3 года составляет 1,92 кг/м–3, в 50 лет – 2,10. Затем очень медленно снижается. Причина этого проста – в молодые годы нарастает содержание минеральных веществ. Удалось установить также прямую зависимость механической прочности кости от содержания в ней МПК. Коэффициент корреляции между содержанием минералов и пределом прочности составлял 0,82–0,90. Поэтому считают, что по содержанию минералов можно косвенно судить о прочности кости.
Однако точно определить возрастные сдвиги позволил лишь метод двуфотонной абсорбциометрии, в частности, удалось выявить разный процент возрастного снижения МПК в ребрах, костях таза и позвоночнике. Метод может быть использовано для непрямого определения предельной величины их компрессионной прочности [9].
Исследованиями [10] показано, что механическая прочность трабекулярной кости позвонка в 14–19 лет составляет у мужчин 85,5 ± 6,5 Н/мм2, у женщин 77 ± 4,7 Н/мм2. В 40–49 лет эта величина уменьшается у мужчин в 1,8 раза, у женщин – в 2,0 раза. В 50–59 лет прочность быстрыми темпами уменьшается у женщин (в 4,7 раза) по сравнению с мужчинами (3,2 раза). Дальнейшие глубокие изменения происходят в 60–69 лет: у женщин прочность снижается в 6 раз, у мужчин – в 3,6 раза. У мужчин в 70–79 лет дальнейшего снижения не происходит, а у женщин продолжает снижаться до 8,0 раз [10].
До внедрения в практику метода двуфотонной абсорбциометрии определение суммарной величины минералов во всем скелете было возможно только с помощью метода нейтронно-активационного анализа. Эта аппаратура технически сложная, поэтому исследования проводились всего лишь в нескольких научных центрах мира.
Результаты проведенных нами исследований показали, что быстрее (в 21–25 лет) минерализация скелета завершается у женщин и у них раньше (в 41–45 лет) выявляются первые признаки уменьшения костной массы. В 50–60 лет основной причиной быстрого снижения минералов у женщин является изменение половой функции и ослабление двигательной активности. У мужчин максимальная суммарная величина минеральных веществ отмечена в 31–35 лет и остается на таком уровне до 55 лет.
Суммарная масса минералов в скелете негров выше, чем у белых людей. Статистически достоверное уменьшение МПКу обоих полов выявляется в возрасте 70 лет, причем у женщин суммарная величина минералов снижается в это время на 17 %, у мужчин – на 9 %. В этих условиях большое значение придается занятию физкультурой, так как отсутствие механической нагрузки на скелет служит одной из причин резорбции кости. При систематическом занятии спортом МПК в месте приложения усилия (позвоночник, нижняя треть голени – у балерин) может увеличиваться до 20 %.
Наиболее выраженное снижение МПК возникает в 80 лет в осевом скелете, особенно в позвоночнике. Следствием старческого остеопороза являются переломы, иногда неоднократные в течение одного и того же года. Поэтому определение абсолютной МП в скелете представляется особенно важным для оценки общей убыли МПК.
Модуль эластичности и прочности на растяжение начинают медленно уменьшаться после 45 лет. При сгибании показатель максимален до 30 лет, а затем снижается и способность кости поглощать энергию.
Интересные наблюдения сделаны о числе полостей указывающих на порозность кости, в различных возрастных группах мужчин. У детей 3 лет их число составляет 9 %, в возрасте 18–45 лет – 3 %, затем медленно увеличивается и в 90 лет достигает 12 %. В связи с этим различна и поглощенная энергия удара: у детей до 10 лет – 2–6∙104 Jm–2, а с 13 лет – 0,9∙104 Jm–2. У женщин кость более порозная [11, 12], а это ведет к уменьшению объема, в котором поглощается энергия. Поэтому снижается ударная энергия, в частности, в кортикальном слое бедренной кости. Энергия абсорбции ниже у очень молодых и очень старых людей. Изменение энергии удара на 40 % зависит от содержания минералов. Высокая минерализация уменьшает способность образца к поглощению энергии. Из этого вывод: большое содержание минералов уменьшает способность кости переносить пластическую упругую деформацию. Наряду с этим следует иметь ввиду, что содержание минералов также приводит к увеличению максимума давления и оба эффекта как бы компенсируют друг друга, но это не сказывается на суммарной величине абсорбированной энергии.
Химический состав, строение и свойства костей
Разделы: Биология
Цель урока: изучить химический состав, строение и свойства костей.
I. Просмотр видеофильма (о движение).
Сегодня при изучении нового материала, нам понадобятся знания предыдущего урока.
II. Проверка знаний учащихся. Воспроизводящая беседа и работа интерактивной доской.
1. Каковы основные функции опорно-двигательного аппарата?
2. Назовите отделы скелета и покажите их на модели скелета человека.
III. Изучение нового материала.
Кость очень прочна, а почему? (Постановка проблемы урока).
Для этого мы взяли куриные косточки и их положили 10% раствор соляной кислоты. Держали их 3 дня. Результат опыта видите куриный кость можно завязывать в узел. В косточке содержащиеся неорганические вещества растворились. В нем остались органические вещества. Значит, органические вещества костям придают гибкость, упругость. Проведем второй опыт сжигание кости. Сначала из кости выходит вода и в конце остаются зола. Зола состоит из неорганических веществ. Они костям придают хрупкость. Вместе органические и неорганические вещества костям придают твердость, упругость, гибкость и прочность.
— Сочетание твёрдости и гибкости определяют прочность кости.
Вывод. Свойства кости определяются её составом. Прочность кости определяется единством органических и неорганических веществ. Итак, мы убедились, что свойства кости зависят от состава. Но только ли состав влияет на свойства?
— От чего еще зависят уникальные свойства кости?
Объяснение нового материала по теме: «Строение кости». (рассказ учителя)
Рассмотрим строение кости, и докажем что ее свойства зависят от строения. По ходу моего объяснения вы будете выполнять задание № 61 на стр. 27 в рабочих тетрадях на печатной основе (обозначение частей кости на рисунке).
— Ребята, назовите основную ткань, из которой построена кость?
Костная ткань построена из костных клеток и межклеточного вещества, имеющего у человека пластинчатое строение. (можно использовать интерактивную доску)
Теперь проведем опыт. Для этого берем бумагу в формате А-4, брусчатка (деревянная), гири. Берем брусчатку, ставим по параллели оставляя между ними расстояния, бумагу положим на брусчатку верх ставим гири. Наблюдаем, бумагу сначала сложим на два, на четыре. (сгибается). После этого бумагу заворачиваем в трубку. Положим на брусчатку.Сверху ставим гири, не сгибается. Делаем выводы : Трубчатые кости обладают твердостью.
Повторим основные понятия по строению кости: надкостница, костное вещество, губчатое вещество, красный костный мозг, желтый костный мозг.
4. Итак, мы рассмотрели строение кости, и теперь можем ответить на вопрос: «Зависят ли свойства кости от ее строения?».
Кроссворд к уроку по теме: «Состав, строение и свойства костей».
Кто первым разгадает кроссворд, поднимите руку. Вас ожидает приз! После ответа «остеология» учащиеся проверяют кроссворд.
— А как вы думаете, что означает слово «остеология»?
С возрастом увеличивается содержание в кости неорганических веществ и уменьшается содержание органических.
— Почему у детей часто встречаются искривления костей, а у пожилых людей переломы?
— Почему в вашем возрасте нужно постоянно следить за осанкой?
Подведение итогов урока.
Подведем итог урока.
VI. Домашнее задание: стр. 93, ответить на вопросы и найти дополнительную информацию об опорно-двигательной системе под рубрикой «Это интересно». Надеюсь, что старания биолога не напрасна. Следите за своей осанкой, занимайтесь физической культурой и правильно питайтесь. Желаем, чтобы ваши косточки были здоровы, а вы были всегда такими гибкими и пластичными.
Урок заканчивается демонстрацией фрагмента фильма, где показана красота и пластичность танца или спортивных упражнений.
Научная электронная библиотека
Глава 5. ПОРОГОВЫЕ ЗНАЧЕНИЯ МИНЕРАЛЬНОЙ ПЛОТНОСТИ КОСТЕЙ СКЕЛЕТА, ПРИ КОТОРОЙ ПРОИСХОДЯТ ПЕРЕЛОМЫ. МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ КОСТЕЙ СКЕЛЕТА В ВОЗРАСТНОМ АСПЕКТЕ
Механическая прочность кости на 80–90 % зависит от минеральной плотности (11, 15, 22). На 10–20 % она связана с другими факторами: строением кости, восстановлением после микропереломов, состоянием коллагенового матрикса и костного мозга. Для возникновения переломов имеет значение и то, что в трабекулярной кости в возрасте 35 лет содержится на 40 % меньше минеральных веществ, чем в компактной.
Основное число переломов происходит в местах расположения трабекулярной кости, хотя ее всего 20 % (остальные 80 % – компактная кость). Она имеет большую поверхность, лучше васкуляризирована, близко к ней расположены клетки костного мозга. По мере старения происходит истончение кортикального слоя, резорбция трабекулярной кости, в некоторых местах она исчезает полностью, пустоты замещаются жиром, происходит уменьшение гемопоэтической ткани в костном мозге. Однако соотношение минералов и органического матрикса изменяется незначительно, равно как и химическое строение минеральных веществ.
Анализ показывает, что, например, при уменьшении у мужчин суммарной количества минералов во всем скелете на 7 % отмечаются переломы лучевой кости в типичном месте, на 10 % – в позвоночнике,
на 16 % – в проксимальном конце бедренной кости. У женщин они появляются при значительно меньшем значении и на 10 лет раньше (табл. 5.1).
Мы измеряли МПК и в отдельных его крупных частях. Оказалось, при старческом остеопорозе количество минералов в костях черепа снижено на 25 %, в верхних конечностях – на 15 %, нижних –
16 %, туловище – 34 % (если количество минералов в туловище принять за 100 %, то в ребрах оно уменьшалось на 20 %, костях таза – 37 %, позвоночнике – 43 %).
Возрастные изменения суммарной величины минеральных веществ (г) в скелете и пороговая их величина (г), при которой впервые возникают переломы
Пороговая
величина МПК
17 (верхняя треть бедра)
30 (верхняя треть бедренной кости)
Актуальной проблемой травматологии является изучение изменений МПК в поясничном отделе позвоночника, так как переломы чаще всего возникают в верхних поясничных и нижних грудных позвонках. Для диагностики и прогноза переломов мы определяли суммарную величину минералов в позвонке потому, что прочность его снижается пропорционально изменению их массы и в меньшей мере зависит от плотности только трабекулярной кости, которая определяется лишь для того, чтобы свести до минимума ошибку. Как следует из табл. 5.2, суммарная величина минералов в позвонке, при которой впервые (пороговое значение) происходят переломы у мужчин, составляет 20,939 г, ей соответствует МПК 0,970 г/см2. У женщин эти величины равны соответственно 17,610 г и 0,936 г/см2. У мужчин суммарная величина минералов убывает за каждое десятилетие после 50 лет на 1,1–1,4 г. У женщин этот процесс начинается на 10 лет раньше и потеря равна 1,5–2,4 г.
Возрастные изменения МПК третьего поясничного позвонка и ее пороговое значение, при котором происходят переломы
от незначительных механических воздействий
Всего
минералов, г, в позвонке
Пороговая величина МПК, г/см2
Число клиновидных и поперечных переломов позвоночника существенно возрастало при уменьшении плотности: при снижении ее на 20 % они встречались в 11 % случаев, на 36 % возникали в 48 % случаев.
На содержание минералов в позвонках и, следовательно, на их прочность влияет гормональный статус. Так, например, в течение 2–3 лет после менопаузы потеря минералов в поясничных позвонках составляет 6 % за год. Поэтому у женщин 50–79 лет 95 % переломов происходит при содержании минералов 16,8–10,9 г (МПК – 0,925–0,595 г/см2).
Уменьшение плотности минералов в позвонках ведет к тому, что у женщин 51–65 лет в 6 раз больше переломов, чем у мужчин, а после
70 лет – в два раза больше. Подобное соотношение не случайно, так как у женщин на 30 % меньше исходная масса минералов.
К 80-ти годам содержание минералов у женщин уменьшается на 42 %, у мужчин – на 20 %. Это приводит у женщин к тому, что механическая прочность позвонка в 80 лет уменьшается в 2,6 раза, а его трабекулярной кости – в 4 раза. Исходя из изложенного, становится понятным, что МПК может быть использована как непрямой показатель компрессионной прочности (зависимость между МПК и прочностью прямолинейная до величины 9,8 г).
В шейке бедренной кости статистически достоверная убыль МПК отмечена в возрасте 51–60 лет как у мужчин, так и у женщин (табл. 5.3). Данные показывают, что пороговой величиной МПК у мужчин является 1,26 г/см2, у женщин – 0,94 г/см2. Число переломов проксимального отдела после 60 лет удваивается каждые 10 лет, а в межвертельной области утраивается. К 80–ти годам МПК у женщин в проксимальном отделе уменьшается на 47 %, а в межвертельной области – на 53 %. У мужчин потеря минералов составляет 2/3 от данных у женщин. Наибольшее их число (95 %) происходит при МПК 0,8 г/см2.
Возрастные изменения минеральной плотности (МПК) шейки бедренной кости и ее пороговое значение, при которой происходят переломы от незначительных механических воздействий