Чем определяется терморегуляция организма человека

Чем определяется терморегуляция организма человека

Регуляция теплообмена, а следовательно, и температуры тела человека осуществляется центром терморегуляции, который расположен в медиальной преоптической области переднего отдела гипоталамуса и в заднем отделе гипоталамуса. Разрушение этих отделов гипоталамуса или нарушение их нервных связей посредством перерезки на уровне среднего мозга в экспериментах на животных приводит к нарушению контроля за температурой тела у гомойотермных организмов. Кроме того, местное нагревание передней гипоталамической области вызывает усиление потоотделения и учащение дыхания у экспериментальных животных, охлаждение — возникновение дрожи и «свертывание в клубок». Регистрация активности отдельных нейронов гипоталамуса с помощью микроэлектродов показала ее изменение как в ответ на локальные колебания температуры в самом гипоталамусе, так и при воздействии раздражителей на терморецепторы кожи, внутренних органов и сосудов. Вышеперечисленные факты доказывают, что центр терморегуляции расположен в гипоталамусе.

В терморегуляторном центре гипоталамуса обнаружены различные по функциям группы нервных клеток:
1) термочувствительные нейроны преоптической области;
2) клетки, «задающие» уровень поддерживаемой в организме температуры тела («установочная точка» терморегуляции) в переднем гипоталамусе;
3) вставочные нейроны (интернейроны) гипоталамуса;
4) эффекторные нейроны, управляющие процессами теплопродукции и теплоотдачи, в заднем гипоталамусе (рис. 13.5).

Чем определяется терморегуляция организма человека. Смотреть фото Чем определяется терморегуляция организма человека. Смотреть картинку Чем определяется терморегуляция организма человека. Картинка про Чем определяется терморегуляция организма человека. Фото Чем определяется терморегуляция организма человекаРис. 13.5. Схема взаимодействия различных типов нейронов терморегуляторного центра гипоталамуса между собой и с кожными терморецепторами. Стимуляция тепловых рецепторов кожи (Рт) и гипоталамуса активирует процессы теплоотдачи в организме человека, а холодовых рецепторов (Рх) кожи и гипоталамуса — теплопродукции. Ин — интернейроны гипоталамуса.

Термочувствительные нервные клетки преоптической области гипоталамуса непосредственно «измеряют» температуру артериальной крови, протекающей через мозг, и обладают высокой чувствительностью к температурным изменениям (способны различать разницу температуры крови в 0,011 °С). Отношение холодо- и теплочувствительных нейронов в гипоталамусе составляет 1:6, поэтому центральные терморецепторы преимущественно активируются при повышении температуры «ядра» тела человека. На основе анализа и интеграции информации о значении температуры крови и периферических тканей, в преоптической области гипоталамуса непрерывно определяется среднее (интегральное) значение температуры тела. Эти данные передаются через вставочные нейроны в группу нейронов переднего отдела гипоталамуса, задающих в организме определенный уровень температуры тела — «установочную точку» терморегуляции. На основе анализа и сравнений значений средней температуры тела и заданной величины температуры, подлежащей регулированию, механизмы «установочной точки» через эффекторные нейроны заднего гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру. Таким образом, за счет функции центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей, позволяющее поддерживать температуру тела в оптимальных для жизнедеятельности организма пределах (рис. 13.6).

Чем определяется терморегуляция организма человека. Смотреть фото Чем определяется терморегуляция организма человека. Смотреть картинку Чем определяется терморегуляция организма человека. Картинка про Чем определяется терморегуляция организма человека. Фото Чем определяется терморегуляция организма человекаРис. 13.6. Схема механизмов регуляции теплообмена в организме человека. Поддержание относительного постоянства температуры тела достигается с помощью баланса между количеством продуцируемого в единицу времени тепла в организме человека и количеством тепла, которое организм отдает за то же время в окружающую среду. Тепловой баланс регулируется нейрогуморальными механизмами, которые активируются в результате изменения импульсной активности эффекторных нейронов терморегуляторного центра гипоталамуса. В гипоталамический терморегуляторный центр поступает афферентная информация об изменениях внешней температуры от периферических терморецепторов и об изменения температуры «ядра» — от центральных терморецепторов (пояснения в тексте).

В механизме формирования «установочной точки» имеет значение уровень спонтанной активности вставочных нейронов гипоталамуса. Например, если уровень спонтанной активности интернейрона является высоким, то для усиления термогенеза требуется более высокая активность кожных Холодовых рецепторов, а значение пороговой температуры для регулируемой теплопродукции является более низким. И наоборот, если вставочный нейрон проявляет низкую спонтанную активность, то даже незначительная афферентация от кожных Холодовых рецепторов может оказаться достаточной для запуска дополнительного теплообразования в организме. Уровень спонтанной активности вставочных нейронов зависит от соотношения концентрации ионов натрия и кальция в гипоталамусе и некоторых других нетемпературных факторов.

Источник

Роспотребнадзор (стенд)

Роспотребнадзор (стенд)

Тепловое состояние в условиях охлаждающего микроклимата

Тепловое состояние в условиях охлаждающего микроклимата

Тепловое состояние человека, находящегося в условиях охлаждающего микроклимата, является результатом физиологических реакций, связанных с усилением функции нервной системы и эндокринных желез. В результате чего ограничиваются теплопотери организма, одновременно увеличивается обмен веществ и теплообразование. Однако при значительных холодовых нагрузках физиологические механизмы организма мало эффективны. Снижение теплопотерь при низких температурах воздуха осуществляется за счет спазма сосудов кожи и снижения скорости кровотока в них, что способствует повышению теплоизоляции и передачи тепла в окружающую среду. Охлаждение любого участка поверхности тела вызывает рефлекторную реакцию организма не только со стороны сосудов кожи, но и слизистой оболочки, дыхательных путей, почек и др. органов. Спазм сосудов приводит к снижению температуры в первую очередь открытых участков тела и дистальных отделов конечностей. Когда напряжение процессов терморегуляции не компенсирует интенсивное холодовое воздействие и происходит снижение температуры тела. Изменение температуры кожи приводит к дискомфортным тепловым ощущениям. Кроме того, при воздействии холода увеличиваются легочная вентиляция легких и потребление кислорода, что вызывает повышение эффективности дыхания. Количество потребляемого кислорода зависит от интенсивности холодового раздражителя и длительности его воздействия. В состоянии физиологического покоя при действии холода у одетого человека теплообразование возрастает в 2-3 раза, а при выполнении мышечной работы- в 4 раза. Повышение обмена веществ за счет механизмов сократительного термогенеза позволяет компенсировать значительные потери тепла и сохранить тепловой баланс. В состоянии покоя температура тела сохраняется на нормальном уровне, но при длительной и значительной холодовой нагрузки, вследствии истощения механизмов терморегуляции, в организме нарастает дефицит тепла и происходит падение температуры тела. Умеренная физическая нагрузка в условиях охлаждающего микроклимата является положительным фактором, повышающим устойчивость организма к холоду. Снижение температуры тела до 35 градусов соответствует легкой степени общего переохлаждения. Общее переохлаждение в классическом виде в условиях производства, когда рабочие обеспечены средствами индивидуальной защиты и соблюдают режим труда и отдыха практически не встречается. Однако даже при сохранении температуры тела в нормальных пределах возможны местные нейроваскулярные поражения организма. Поэтому с целью предотвращения переохлаждения на производстве основными профилактическими мероприятиями являются: создание в производственных помещениях условий труда, соответствующих допустимым нормам по параметрам микроклимата, а также поддержание допустимого теплового состояния работающих на открытом воздухе или в неотапливаемых помещениях. Создание допустимых параметров микроклимата сводится к проведению теплоизоляции стен и полов; устройству тамбуров-шлюзов у дверей и ворот производственных помещений, эффективной работы отопления и вентиляции, включая воздушно-тепловые завесы. Нормальные микроклиматические параметры на рабочих местах поддерживаются местным конвекционным или лучистым отоплением. Допустимое тепловое состояние достигается применением соответствующей одежды и др. средств индивидуальной защиты; ограничением времени пребывания в неблагоприятных условиях; введением регламентирующих перерывов для отдыха и обогрева. Рациональная одежда, головные уборы, обувь и рукавицы имеют основное значение для защиты работников от холода. Очень важным является применение эффективных способов согревания во время перерывов: горячий чай, горячее питание, по окончании работы- согревающий душ.

Источник

Нарушение терморегуляции организма

Общие сведения

Расстройство терморегуляции это нарушение постоянства температуры тела, вызванные дисфункцией ЦНС. Температурный гомеостаз считается одной из основных функций гипоталамуса, который содержит специализированные термочувствительные нейроны.

От гипоталамуса начинаются вегетативные пути, которые при необходимости могут обеспечивать увеличение теплопродукции, вызывая мышечную дрожь или рассеяние излишнего тепла.

При поражении гипоталамуса, а также следующих от него к стволу мозга или спинному мозгу путей возникают расстройства терморегуляции в виде гипертермии или гипотермии.

Теплоотдача организмом во внешнюю среду зависит от температуры окружающей среды, от количества влаги (пота), выделяемой организмом вследствие затрат тепла на испарение, от тяжести выполняемой работы и физического состояния человека.

При высокой температуре воздуха и облучении кровеносные сосуды поверхности тела расширяются, при этом происходит перемещение крови: главного аккумулятора тепла в организме, к периферии (поверхности тела). Вследствие такого перераспределения крови теплоотдача с поверхности тела значительно увеличивается.

Нарушения терморегуляции организма могут возникать при:

повреждении центрального или периферического звена системы терморегуляции;

кровоизлияниях и опухолях в области гипоталамуса;

при травмах, сопровождающихся повреждением соответствующих проводящих путей.

Нарушение терморегуляции сопутствует многим системным заболеваниям, обычно проявляясь повышением температуры тела или лихорадкой. Повышение температуры тела является настолько надежным индикатором заболевания, что наиболее часто используемой в клинике процедурой стала термометрия.

Изменения температуры можно выявить даже при отсутствии явного фебрилитета. Они проявляются в виде покраснения, побледнения, потоотделения, дрожи, ненормальных ощущений тепла или холода, а также могут состоять из неустойчивых колебаний темпе­ратуры тела в пределах нормы у больных с постельным режимом.

При физической работе времен­но нарушается баланс между теплопродукцией и теплоотдачей с последующим быстрым восстановлением нормальной температуры в состоянии покоя за счет длительной активации механизмов теплоотдачи.

Фактически, при длительной физической нагрузке расширение сосудов кожи в ответ на повышение темпера­туры сердцевины организма прекращается для того, чтобы сохранить эту темпе­ратуру.

Нарушение терморегуляции при лихорадке

При лихорадке адаптационная способность снижается, так как по дости­жении стабильной температуры тела теплопродукция становится равной тепло­отдаче, однако и та, и другая находятся на уровне выше исходного. Кровоток в периферических сосудах кожи играет более важную роль в регуляции теплопродукции и теплоотдачи, чем потоотделение.

При лихорадке температура тела, определяемая терморецепторами, низкая, поэтому организм реагирует на нее как на охлаждение.

Дрожь приводит к увеличению теплопродукции, а сужение сосу­дов кожи — к уменьшению теплоотдачи. Эти процессы позволяют объяснить возникающие в начале лихорадки ощущения холода или озноба. И наоборот, при удалении причины лихорадки температура снижается до нормальной, и боль­ной ощущает жар. Компенсаторными реакциями в данном случае являются:

рас­ширение сосудов кожи;

При высокой температуре окружающей среды развиваются четыре клинических синдрома:

тепловая травма при напряжении;

Каждое из этих состояний можно отдифференцировать на основании различных клинических проявлений, однако между ними есть много общего и эти состояния можно рассматривать как разновидности синдромов одного и того же происхождения.

Симптомокомплекс теплового поражения развивается при высокой тем­пературе (более 32°С) и при высокой относительной влажности воздуха (более 60%). Наиболее уязвимы люди пожилого возраста, лица, страдающие психи­ческими заболеваниями, алкоголизмом, принимающие антипсихотические, моче­гонные, антихолинергические препараты, а также люди, находящиеся в помеще­ниях с плохой вентиляцией.

Источник

Изменения температуры тела. Гипо- и гипертермия

Чем определяется терморегуляция организма человека. Смотреть фото Чем определяется терморегуляция организма человека. Смотреть картинку Чем определяется терморегуляция организма человека. Картинка про Чем определяется терморегуляция организма человека. Фото Чем определяется терморегуляция организма человека

Содержание статьи:

Что большинство людей знают о терморегуляции собственного организма? В основном лишь то, что в норме температура тела 36,6 °С. А между тем это сложный процесс, в котором задействованы разные органы и системы нашего организма. За счет терморегуляции наш организм способен приспосабливаться к различным погодным условиям. Однако существует вероятность нарушения этого процесса, влекущая за собой переохлаждение или повышение температуры тела.

Терморегуляция организма

Терморегуляция – это сложный физиологический процесс теплообразования и теплоотдачи, позволяющий поддерживать постоянную температуру тела, несмотря на значительные перепады температуры внешней среды.

За поддержание температуры в человеческом организме отвечает вегетативная нервная система и гипоталамус. Организм воспринимает температуру окружающей среды за счет нервных окончаний в коже и мышцах – терморецепторов. Терморецепторы постоянно передают эту информацию в центральную нервную систему, а именно в гипоталамус, в котором расположен центр терморегуляции. В свою очередь центр терморегуляции определяет скорость метаболизма, который настраивает основной обмен на:

При повышении температуры теплопродукция уменьшается, и организм вырабатывает меньше тепла, а интенсивность метаболизма снижается. Одновременно увеличивается теплоотдача, что защищает организм от перегрева (капилляры расширяются, кожа краснеет, выделяется пот).

При понижении температуры начинаются противоположные процессы: теплоотдача уменьшается (капилляры сужаются, температура крови повышается), а теплопродукция увеличивается. Таким образом организм сохраняет тепло.

Причины гипотермии и гипертермии

Основной причиной нарушения терморегуляции являются внешние факторы. В отличие от других теплокровных животных в ходе эволюции мы стали менее приспособлены к перепадам температуры, и длительные колебания в 1-2 °С от нормы могут привести к гипо- и гипертермии.

Гипотермия – это критическое переохлаждение организма, когда температура падает до 35 °С и ниже. Основной причиной гипотермии является потеря тепла на холоде через кожу и дыхание. Наш организм включает защитную программу, при которой спасает жизненно важные органы, жертвуя кожными покровами, конечностями – всем тем, без чего человек может выжить. Гипотермию делят на три стадии:

Гипертермия – стойкое повышение температуры тела выше 38,5 °С, вызванное внешними факторами, затрудняющими теплоотдачу или увеличивающими поступление тепла извне. Гипертермия также делится на три стадии:

Источник

Чем определяется терморегуляция организма человека

Чем определяется терморегуляция организма человека. Смотреть фото Чем определяется терморегуляция организма человека. Смотреть картинку Чем определяется терморегуляция организма человека. Картинка про Чем определяется терморегуляция организма человека. Фото Чем определяется терморегуляция организма человека

Метеотропные реакции – это физиологические реакции организма человека на влияние собственно метеорологических факторов. Здоровые люди легко переносят изменения погоды, адаптивные физиологические механизмы позволяют им приспосабливаться без заметных расстройств к любым метеоусловиям, вместе с тем снижение эффективности этих механизмов приводит к возникновению различных патологических реакций. В большинстве случаев они непродолжительны и сопровождаются такими симптомами, как головные боли, раздражительность, повышенная возбудимость, бессонница, депрессия, ревматоидные боли и др. Развитие таких ответных реакций на влияние погоды чаще всего обозначают как метеочувствительность. Во многих исследованиях показано, что существует достоверная связь между обострением ряда патологических состояний и изменениями погодных условий [1–3].

В большинстве публикаций выделяются следующие основные погодные факторы, оказывающие влияние на здоровье человека: температура окружающей среды, влажность воздуха, атмосферное давление, скорость ветра, солнечная активность, геомагнитная активность и атмосферное электрическое поле [4, 5]. Помимо этих факторов анализируется влияние сезонов года и состояния окружающей среды [6]. Несмотря на многолетнюю историю изучения метеочувствительности, физиологические механизмы воздействия погоды на человека остаются не до конца ясными. Наиболее изучены механизмы влияния на организм человека температуры окружающего воздуха.

На увеличение температуры окружающей среды реагируют тепловые терморецепторы кожи, импульсы от них поступают в центры терморегуляции, расположенные в гипоталамусе, которые в свою очередь запускают каскад реакций, индуцирующих кожную вазодилятацию и потоотделение. Возрастание кожного кровотока увеличивает теплоотдачу во внешнюю среду и обеспечивает потовые железы кислородом и жидкостью для выделения пота. Потоотделение – это самый эффективный механизм срочной адаптации к высокой температуре окружающей среды, который позволяет за счет интенсивного испарения пота с кожи (до 3 кг/ч) значительно увеличить выделение тепла из организма. Однако с потом, помимо воды, организм теряет и электролиты (до 10–30 г хлористого натрия в день), что индуцирует интенсивный переход жидкости в кровяное русло для компенсации потери на потоотделение. Перераспределение жидкости стимулирует почки к усилению ретенции солей и воды. Дилатация кожных сосудов (прежде всего открытие артериовенозных анастамозов) обуславливает реакции, индуцирующие увеличение объема циркулирующей крови, при этом в норме артериальное давление не изменяется или несколько снижается, а частота сердечных сокращений увеличивается. Кровоток во внутренних органах (печень и почки) может снижаться [7].

При недостаточности адаптационных механизмов, направленных на поддержание объема плазмы крови и ее электролитного состава, или при интенсивном и длительном потоотделении наблюдается уменьшение объема циркулирующей крови и существенное снижение артериального давления. В связи с этим при срочной адаптации к повышению температуры основная нагрузка ложится на сердечно-сосудистую систему, которая, при наличии функциональных нарушений может не справляться с возросшими потребностями. Поэтому в жаркую погоду, особенно в периоды «волн жары» (нескольких последовательных аномально жарких дней), в наибольшей степени страдают пациенты с болезнями системы кровообращения, адаптивные резервы у которых оказываются недостаточными.

Кроме того, перераспределение крови, направленное на значительное увеличение кожного кровотока и уменьшение кровотока во внутренних органах – органах с высоким уровнем обменных процессов, с одной стороны, приводит к увеличению теплоотдачи с поверхности тела, а с другой – к уменьшению теплопродукции внутренними органами при их сниженном кровоснабжении. Вместе с тем уменьшение кровотока в органах с высоким метаболизмом, особенно у больных с атеросклерозом или заболеваниями печени и почек может индуцировать их гипоксию. Во многих исследованиях показано, что при напряженной адаптации, видимо, вследствие возникающей гипоксии индуцируется окислительный стресс [8–11], который характеризуется накоплением высокотоксичных продуктов свободнорадикального окисления в крови и тканях вследствие усиленного генерирования активных форм кислорода (АФК) и/или подавления активности утилизирующих АФК антиоксидантных ферментов. В исследовании М.Д. Смирновой с соавторами [9] отмечено, что летняя жара провоцирует развитие окислительного стресса у 2/3 больных сердечно-сосудистыми заболеваниями. У них увеличивается содержание продуктов перекисного окисления липидов в отсутствие изменений активности фермента, утилизирующего активные формы кислорода [10]. Кроме того, у этих же пациентов отмечена большая частота развития сердечно-сосудистых осложнений, включая гипертонические кризы, по сравнению с пациентами с большей активностью антиоксидантной системы. При этом показано, что использование антигипоксантов и антиоксидантов позволяет улучшить переносимость летней жары пациентами с сердечно-сосудистыми заболеваниями [11].

На снижение температуры окружающей среды ниже комфортной реагируют холодовые терморецепторы кожи, импульсы от них поступают в центр терморегуляции в гипоталамусе, который, в свою очередь, запускает каскад реакций, индуцирующих кожную вазоконстрикцию и увеличение теплопродукции. Основное увеличение теплопродукции достигается за счет сократительной деятельности мышц (дрожь и терморегуляционный мышечный тонус), разобщения окисления и фосфорилирования, а также снижения эффективности клеточных насосов (АТФаз), что стимулируется норадреналином и тиреоидными гормонами и сопровождается увеличением потребления кислорода и энергетических субстратов. При длительной адаптации к холоду увеличивается количество и активность митохондрий для обеспечения возросшего потребления АТФ. Подробный анализ основных механизмов адаптации к холоду сделан в обзоре [12]. Органами, дающими основной вклад в теплопродукцию при адаптации человека к холоду, являются скелетные мышцы и, в меньшей степени, печень. Увеличение активности митохондрий при холодовой адаптации приводит к усилению генерации активных форм кислорода, поскольку митохондрии являются одним из основных источников АФК в физиологических условиях. На уровне организма систематическое холодовое воздействие вызывает стимуляцию собственных защитных ресурсов посредством усиления окислительных процессов, которые, в свою очередь, инициируют активацию антиоксидантной системы и повышают общую устойчивость организма к стрессовым факторам различной природы. Однако при недостаточности адаптационного потенциала, например при болезнях системы кровообращения, усиление кровотока для обеспечения кровоснабжения активно работающих (производящих тепло) органов лимитируется сердечно-сосудистой системой, недостаточный ее потенциал может обуславливать гипоксию и чрезмерное увеличение АФК. Мобилизация антиоксидантной системы при этом также может быть недостаточной, что в свою очередь будет приводить к окислительному стрессу, усилению перекисного окисления липидов и обострению заболевания. Во многих исследованиях показано, что окислительный стресс является этиологическим и патогенетическим фактором риска развития заболеваний сердечно-сосудистой системы [13, 14].

Среди неблагоприятных погодных факторов, помимо жаркой и холодной погоды, выделяют значительные колебания атмосферного давления [15, 16], которые обычно связаны с крупномасштабными (синоптическими) циркуляционными процессами в атмосфере. В ходе этих процессов изменяется вся совокупность метеорологических элементов. В весенний период наблюдаются наибольшие различия между дневными и ночными значениями атмосферного давления, и потенциальная зависимость обострения некоторых болезней системы кровообращения от резкого изменения атмосферного давления, видимо, может объяснить выявленный в исследовании K. Beseoglu с соавт. [17] весенний максимум смертности и количества обострений сосудистых заболеваний.

Еще одним погодным фактором, который, по мнению некоторых исследователей, оказывает существенное влияние на метеочувствительных людей, является влажность атмосферного воздуха [18–20]. P. Dilaveris с соавторами [18] установили, что среднемесячная смертность от инфаркта миокарда в Афинах является линейной функцией от среднемесячной относительной влажности (связь положительная) c максимальными значениями в зимние месяцы и минимальными в летние. Вместе с тем в средиземноморских странах высокая относительная влажность воздуха регистрируется в зимний период, а выявленная в работах [19] закономерность отражает установленный во многих исследованиях факт более высокой смертности зимой. При этом в странах с более холодным климатом в зимний период, когда наибольшее количество обострений болезней системы кровообращения, регистрируются низкие значения относительной и абсолютной влажности. В работах Б.Т. Величковского [20] показано, что значительное снижение абсолютной влажности воздуха в зимний период, обусловленное очень низкими значениями температуры атмосферного воздуха, приводит к снижению эффективности газообмена кислорода в органах дыхания. Кроме того, дыхание сухим воздухом может индуцировать повышение сосудистого сопротивления.

Разными исследователями было отмечено, что метеотропные реакции могут возникать за несколько дней до наступления неблагоприятных погодных условий. Это может быть обусловлено тем, что существенному изменению земной погоды обычно предшествуют изменения солнечной активности и сдвиги магнитной напряженности Земли.

В последние десятилетия был проведен ряд специальных исследований, направленных на анализ влияния космической погоды (гелио- и геомагнитной обстановки) на состояние здоровья.

Для характеристики солнечной активности обычно используют число Вольфа – индекс, характеризующий пятно-
образовательную деятельность Солнца. Для характеристики геомагнитной обстановки используют X-,Y- и Z-компоненты вектора напряженности магнитного поля Земли, а также индексы геомагнитной активности, характеризующие вариации магнитного поля Земли. Резкие изменения параметров геомагнитного поля Земли обычно называют геомагнитными возмущениями или бурями.

Как и при анализе влияния факторов земной погоды, результаты исследования влияния космической погоды на состояние здоровья весьма противоречивы. Анализ баз данных обращений за экстренной медицинской помощью [21–23] и наблюдения за больными в клиниках [21, 24] показали, что имеется достаточно широкий спектр реакций организма на изменение космической погоды. В исследованиях Ю.И. Гурфинкеля с соавторами [24] показано, что после магнитной бури образуются сгустки эритроцитов (сладжей) в микрососудах и отмечается ухудшение кровотока, которое приводит к развитию ишемии. В исследовании [22, 23] была показана положительная корреляционная связь между количеством обращений за экстренной медицинской помощью пациентов с болезнями системы кровообращения и уровнем геомагнитной активности (ГМА) и отмечено, что эта связь более выражена в зимние месяцы. В других исследованиях показано увеличение количества обострений болезней системы кровообращения как при очень высоких, так и при очень низких уровнях ГМА [23]. Вместе с тем T. Messner с соавторами [25] не выявили достоверной статистической связи между геомагнитной активностью и количеством инфарктов миокарда в северных районах Швеции. При этом изменения геомагнитной активности в полярных районах наибольшие [26].

Механизмы действия геомагнитного поля и солнечной активности на организмы человека и животных не выяснены. Существенная проблема связана с парадоксальностью биологического действия слабых низкочастотных магнитных полей (каким является и геомагнитное поле), энергия которых много меньше характерной энергии биохимических превращений [27]. Тем не менее в биологических и медицинских исследованиях показано достоверное влияние слабых магнитных полей на организм человека [22, 27, 28]. В биофизических исследованиях наиболее часто обсуждаются гипотетические молекулярные механизмы магниторецепции, рассматривающие влияние магнитного поля на скорость реакций с участием спин-коррелированных пар радикалов; квантовые вращения молекулярных групп внутри белков, а также изменения свойств жидкой воды в магнитном поле [21, 27]. В медико-биологических исследованиях наиболее часто обсуждается роль мелатонина [21, 29]. В исследованиях, проведенных на людях в условиях Крайнего Севера, показана прямая корреляционная зависимость между колебаниями электромагнитного поля Земли (Kp–индекс) и суточным ритмом секреции мелатонина, определяемым по его концентрации в слюне [29]. В исследованиях под руководством С.И. Рапопорта [3, 23] было показано, что у пациентов с заболеваниями сердечно-сосудистой системы в периоды геомагнитных возмущений и магнитных бурь отмечается достоверное подавление продукции мелатонина. При этом добавление мелатонина (3–6 мг в 22.00) к традиционной терапии снижало риск развития сердечно-сосудистых осложнений.

Еще одним фактором, потенциально обуславливающим метеочувствительность организма, может быть изменение электрического поля атмосферы (ЭПА). В районах ясной безоблачной погоды ЭПА направлено вниз, к земле, и его напряженность составляет около 1 В/м. Основными источниками ионизации воздуха являются космические лучи и излучения радиоактивных веществ, содержащихся в земной коре и атмосфере. Электрические характеристики приземного ЭПА определяются различными процессами: интенсивностью ионизации и перемешивания атмосферы, загрязненностью и увлажненностью воздуха (туман, дождь, снег), температурой и давлением воздуха, временем суток и временем года и др. В циклонических условиях погоды появление слоистой облачности верхнего и более низких ярусов, а также конвективной облачности индуцирует кардинальные изменения приземного электрического поля. Как правило, происходит переполюсовка (инверсия), в ходе которой поле становится направленным вверх, к нижней кромке облаков. Напряженность поля может увеличиваться до 2000 В/м и выше. Атмосферные ионы различаются по химической природе входящих в них молекул, массой и подвижностью. Подвижность отрицательных ионов, как правило, больше, чем положительных [30]. У земной поверхности над сушей концентрация тяжелых ионов значительно больше, чем легких. Это обусловлено тем, что в результате нормальных процессов ионизации создаются лишь легкие ионы, а тяжелые ионы могут образовываться лишь в случае присоединения легких к частицам аэрозоля, концентрация которого в нижних слоях воздуха больше. При запыленности воздуха вследствие увеличения числа взвешенных в атмосфере частиц число легких ионов убывает, а число тяжелых возрастает. Кроме того, концентрации ионов могут меняться вследствие их переноса под действием электрических сил, а также диффузии от мест с большей концентрацией и их механического переноса с движущимися массами воздуха. Концентрация легких отрицательно заряженных аэроионов возрастает при прохождении теплых воздушных фронтов и снижается в холодных фронтальных массах воздуха. Летом лёгких ионов больше, чем зимой. Особенно их много после дождя. Во многих исследованиях показано, что увеличение концентрации легких отрицательных ионов положительно влияет на организм [31, 32]. Таким образом, изменение состояния электрического поля атмосферы может влиять на самочувствие людей посредством механизмов, обусловленных динамикой концентрации легких отрицательных аэроионов, вызванной собственно электрическими процессами в тропосфере или изменением концентрации аэрозолей в воздухе. Кроме того, поскольку при изменении абсолютной влажности и атмосферного давления ионизация воздуха также может меняться, то эти же механизмы могут в какой-то степени обусловливать и чувствительность к перепадам атмосферного давления и влажности.

В заключение необходимо отметить, что метео- и гелиогеофизические факторы вызывают ответные реакции в организме любого человека, однако их негативное влияние, которое обычно называется метеочувствительностью, в основном связано с пониженными адаптационными резервами организма.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *