Чем определяется динамика популяций
Динамика популяции
Динамика популяции — раздел популяционной экологии, изучающий численностьособей популяции и механизмы ее регуляции. Жизнь популяции проявляется в ее динамике. К основным признакам динамики относятся:
— численность популяции — общее число особей на данной территории или в данном объеме (например, воды);
— плотность популяции — это среднее число особей на единицу площади или объема;
рождаемость (плодовитость) — число новых особей, появившихся за единицу времени в результате размножения;
— смертность — число особей, погибших за определенный период;
— прирост популяции — разница между рождаемостью и смертностью;
— темп роста — средний прирост за единицу времени. Изучение этих демографических признаков необходимо
для выявления законов жизни популяции, а следовательно, и основ стабильности экосистемы в целом.
Численность популяции никогда не бывает постоянной и зависит от соотношения интенсивности размножения (плодовитости) и смертности. В процессе размножения происходит рост популяции, смертность же приводит к сокращению ее численности.
Рождаемостьхарактеризует частоту появления новых особей в популяции. Различают рождаемость абсолютную и удельную, максимальную и экологическую.
Абсолютная рождаемость — число особей, появившихся в популяции за единицу времени. Удельная рождаемость выражается в числе родившихся особей на число особей в популяции в единицу времени. Например, для популяции человека показателем удельной рождаемости обычно служит число детей, родившихся в год на 1000 человек (таблица 4.2).
Максимальная рождаемость определяется числом самок в популяции и их способностью производить определенное число детенышей в единицу времени (т.е. физиологической плодовитостью). Обычно рождаемость ниже максимальной, т.к. она соответствует сложившимся экологическим условиям и называется экологической.
Таблица 4.2 Рождаемость и смертность в городе Смоленске
Год | Абсолютная | Удельная | |
рождаемость | смертность | рождаемость | смертность |
3550 чел. | 3583 чел. | 10,7 чел. | 10,2 чел. |
2644 чел. | 4480 чел. | 7,7 чел. | 12,7 чел. |
2794 чел. | 4847 чел. | 7,9 чел. | 13,7 чел. |
Экологическая рождаемость дает представление о скорости размножения популяции при фактически сложившихся условиях жизни. Например, взрослая самка трески выметывает миллионы икринок, из которых в среднем доживают до взрослого состояния лишь 2 особи. В результате гибели по разным причинам (болезни, паразиты, хищники и др.) яиц, гусениц и куколок на свет появляется лишь 0,32% взрослых бабочек от числа отложенных яиц.
Численность и плотность популяции зависят также от ее смертности. Смертность популяции— это количество особей, погибших за определенный период. Она, как и плодовитость, изменяется в зависимости от условий среды, возраста и состояния популяции и выражается в процентах к начальной или, чаще, к средней величине ее. У большинства видов смертность в раннем возрасте всегда выше, чем у взрослых особей. У многих рыб до взрослой фазы доживает 1—2% от выметанной икры; у насекомых — 0,3—0,5% от отложенных яиц. Смертность, как и рождаемость, может быть абсолютной и удельной (таблица 4.2).
Выживаемость— средняя для популяции вероятность сохранения особей каждого поколения за определенный промежуток времени. Различают три типа смертности или, как их чаще называют, «кривые выживаемости». Каждый вид имеет свою кривую выживаемости (рис. 11).
Первая кривая — сильно выпуклая. Выпуклость кривой характеризует повышение смертности к концу жизни, остававшуюся до этого низкой. Такой тип кривой характерен для насекомых, личинки которых обитают в почве, воде, древесине или других местах с благоприятными условиями. Он характерен также для проходных рыб, нерестую-щихся один раз в жизни, для многих видов крупных животных и для человека
Вторая кривая — сильно вогнутая. Вогнутость кривой характерна для видов, смертность у которых очень высока на ранних стадиях жизни. Этот тип кривой свойственен большинству растений и животных. Максимальная гибель многих растений происходит в стадии прорастания семян или всходов, а животных — в личиночной фазе или молодом возрасте, например, у устриц, рыб, птиц, многих беспозвоночных.
Третий тип кривой — промежуточный, почти прямая линия, характерна для видов, у которых смертность мало изменяется с возрастом и остается более или менее одина-
ковой в течение всей жизни данной группы. Такая смертность встречается очень редко и только у популяций, постоянно находящихся в оптимальных условиях, например, таких, как гидра пресноводная.
Рис. 11. Три типа кривых выживания: 1 — человек, 2 — рыбы, 3 — гидра
Форма кривой выживания связана со степенью заботы о потомстве и способами защиты молоди. Так, кривые выживания пчел и дроздов, которые заботятся о потомстве, менее вогнуты, чем кривые выживания кузнечиков или сардин, не заботящихся о потомстве.
В замкнутых популяциях (в которых нет миграций) скорость изменения численности определяется только соотношением рождаемости и смертности. Если рождаемость выше смертности, то удельная скорость роста положительная. Если же смертность выше рождаемости, то удельная скорость становится отрицательной и численность популяции начинает убывать. Рождаемость и смертность, т. е. динамика численности, напрямую связаны с возрастной и половой структурами популяции.
Популяция регулирует свою численность и приспосабливается к изменяющимся условиям среды путем обновления и замещения особей. Особи появляются в популяции благодаря рождению и миграции, а исчезают в результате смерти и эмиграции.
При сбалансированной интенсивности рождаемости и смертности формируется стабильная популяция, в которой смертность компенсируется приростом и численность ее, а также ареал поддерживаются на одном уровне.
Популяции, в которых рождаемость превышает смертность и численность популяции растет так быстро, что наступает вспышка массового размножения, называются растущими. Это особенно характерно для мелких животных. Примером может служить увеличение численности популяции колорадского жука (Leptinotarsa decemlineata), быстро расселившегося на территории от Франции до Украины, Белоруссии, Смоленской и Псковской областей. Примером растущей популяции является элодея, завезенная из Америки, появившаяся в 1836 году в Ирландии, и проникшая уже в 1885 году в бассейн Оки. В последние десятилетия наметился рост популяции канареечного вьюрка (Serinus canaria), зеленой пеночки (Phylloscopus trochiloides), чайки обыкновенной (Larus ridibundus), зайца-русака и других видов.
Однако при бурном развитии популяции наступает переуплотнение, что ведет к ухудшению условий существования. А это приводит к резкому возрастанию смертности, в результате чего численность популяции начинает сокращаться. Если смертность превышает рождаемость, популяция становится сокращающейся. Так произошло, например, с элодеей и домовым воробьем (Passer domesticus) в умеренной зоне. В сокращении численности популяций многих животных часто повинен человек; например, таких, как соболь (Martes zibellina), бобр (Castor fiber), зубр (Bison bona-sus), дрофа (Otis tarba) и других. Однако сокращаться безгранично популяция также не может. При определенном уровне численности интенсивность смертности начинает падать, а плодовитость повышается. В итоге сокращающаяся популяция превращается в растущую.
В природе численность популяций всегда испытывает колебания. Амплитуда и период этих колебаний зависят от вида и от условий среды обитания. Различают непериодические (нерегулярные, хаотические) и периодические (регуляр-
ные, циклические) колебания численности популяций. К непериодическим колебаниям численности, а соответственно и плотности популяции, относятся вспышки массового размножения непарного шелкопряда (Ocneria dispar) в южной и юго-восточной частях России в 1879 году, рыжего соснового пилильщика (Neodiprion sertif er) в Ленинградской и Смоленской областях, в Белоруссии с 1958 по 1962 годы. Резкий подъем численности наблюдается у популяций, оказавшихся на новом местообитании. Например, массовое размножение кроликов и разрастание зарослей кактуса опунции в Австралии, колорадского картофельного жука (Leptinotarsa decemlineata) и чайки обыкновенной (Larus ridibundus) в последние годы в Смоленской области.
Периодические колебания повторяются через равные промежутки времени, обычно в течение нескольких лет или одного сезона. Например, циклические изменения с подъемом численности в среднем через 4 года зарегистрированы у леммингов (Dicrostohyx), полярной совы (Nyctea scandiaca) и других животных тундры. Сезонные колебания численности характерны для многих насекомых, мышевидных грызунов, птиц. На периодические колебания численности популяции одним из первых обратил внимание русский генетик С.С. Четвериков (1880—1959), исследовавший изменчивость в природных популяциях. Колебания численности особей, составляющих популяцию, получили название популяционных волн (рис. 12).
Рис. 12. Популяционные волны
Численность и плотность — основные параметры, которые выражают количественные характеристики популяции как целого.
Каждой популяции свойственен так называемый биотический потенциал— способность к увеличению численности за данный промежуток времени. У разных организмов биотический потенциал не одинаков. Примером организмов с высоким потенциалом размножения являются:
— бактерии Bacillus coli, размножающиеся простым делением каждые 20 минут, которые при наличии условий для реализации биотического потенциала, могли бы освоить все пространство земного шара за 36 часов;
— гриб-дождевик, приносящий до 7,5 млрд спор, уже во втором поколении освоил бы всю Землю.
Крупным организмам с низким потенциалом размножения потребовалось бы для этого несколько десятилетий или столетий.
Таким образом, численность каждого вида при благоприятных условиях способна расти по так называемой экспоненциальной (логарифмической) кривой. Рост численности в геометрической прогрессии называется экспоненциальным ростом.График зависимости численности популяции от времени при экспоненциальном росте представляет собой кривую, напоминающую по форме латинскую букву J, называемую экспонентой. Эта J-образная кривая показывает, что в ходе роста популяции ее численность увеличивается с возрастающей скоростью (рис. 13).
Рис. 13. Экспоненциальная кривая роста популяции
Величина изменения численности за единицу времени называется абсолютной скоростью роста численности. Эта ве-
личина зависит от численности популяции: например, из графика на рис. 14 видно, что чем больше численность, тем больше абсолютная скорость роста. Удельная скорость роста численности — это скорость прироста на единицу особи — эта величина и отражает биотический потенциал.
Экспоненциальный рост в реальных условиях наблюдается, когда популяция растет в условиях избытка ресурсов (пищи, места для размножения), отсутствия конкурентов и не испытывает воздействия неблагоприятных факторов. В лабораторных условиях экспоненциальный рост можно наблюдать у популяций микроорганизмов (дрожжей, бактерий, хлореллы) в начальной фазе их роста. В природе экспоненциальный рост наблюдается при вспышке численности грызунов, саранчи, непарного шелкопряда и других насекомых. Экспоненциально может расти численность популяций, вселенных в новую местность, где у них много пищи и мало врагов. Классическим примером такого роста является рост численности кроликов, завезенных в Австралию. Примером экспоненциального роста можно считать размножение микроорганизмов в загрязненных органическими и биогенными веществами водоемах.
Рис. 14. Рост населения мира (млн чел.)
Близок к экспоненциальному типу рост населения популяции человека в настоящее время (рис. 15). Он обусловлен прежде всего резким снижением смертности в детском возрасте.
Естественный рост популяции никогда не реализуется в форме экспоненциальной кривой. В крайнем случае, если это и происходит, то в течение относительно короткого отрезка времени (как в приведенных выше примерах), после чего скорость роста численности снижается. Объясняется это тем, что не только в природных, но и в оптимальных экспериментальных условиях рост численности ограничен комплексом факторов внешней среды и реально складывается как результат соотношения меняющихся значений рождаемости и смертности.
Рост численности популяции замедляется по мере увеличения ее плотности, так как условия для роста и размножения особей становятся менее благоприятными. Например, животным при высокой плотности популяции может не хватать пищи. Растения начинают затенять друг друга, или им не хватает влаги. По мере ухудшения условий удельная скорость роста снижается, и при некоторой плотности численность популяции перестает расти. Эту предельную плотность, которой может достигнуть популяция в данных условиях, называют емкостью среды.Если рост популяции ограничен ресурсами, то после достижения емкости среды численность популяции колеблется возле некоторого среднего уровня и популяция подчиняется правилам логистического роста.
Рис. 15. Логистическая кривая роста популяции
График изменения численности популяции при логистическом росте представляет собой кривую, которая называется логистической кривой и напоминает по форме латинскую букву S (рис. 15). При логистическом росте популяции ее численность некоторое время нарастает, но вскоре этот процесс начинает замедляться, и постепенно рост численности практически прекращается. Для большинства популяций и видов выживаемость отображается логистической кривой.
Раздел 1. Общая экология и ее основные категории
И.Ф. Рассашко, О.В. Ковалева, А.В. Крук
Общая экология
Тексты лекций для студентов специальности 1-33 01 02 «Геоэкология». – Гомель: ГГУ им. Ф. Скорины, 2010. – 252 с.
Раздел 1. Общая экология и ее основные категории
Лекция 7. Учение о популяциях
7.3. Динамика популяций, регуляция численности популяций
Численность и биомасса популяций обычно подвержены большим колебаниям во времени. Изменение численности, биомассы организмов во времени называют динамикой популяций. Существуют два основных типа динамики численности – периодическая и непериодическая. Периодические колебания происходят главным образом под влиянием закономерно изменяющихся факторов среды. У некоторых видов млекопитающих, птиц, рыб, насекомых наблюдаются четкие периодические изменения численности, то есть ее вспышки чередуются со спадами. Однако численность особей в популяциях может колебаться во времени без определенной периодичности. Большое влияние на популяции, такие их свойства как продолжительность жизни особей, плодовитость, которые определяют численность, оказывают температура, освещенность, влажность. Действие многих факторов становится более жестким с увеличением плотности популяций: это – трофические условия, в том числе обостряющиеся конкуренция, хищничество, паразитизм, заболеваемость. Почти всегда вызывают изменения численности популяций антропические воздействия: в сельском и лесном хозяйствах, при рыболовстве и других видах промысла, при разрушении местообитаний человек способствует уменьшению их численности; при охране каких-то видов, наоборот, их численность возрастает. Эти колебания («волны жизни») вызываются, таким образом, многими воздействиями со стороны как живой, так и неживой природы.
Динамика численности популяций складывается при взаимодействии основных популяционно-динамических процессов: 1) рождаемости, 2) смертности, 3) скорости роста, 4) иммиграции новых особей из других популяций, 5) эмиграции некоторых особей за пределы ареала данной популяции.
Рождаемость характеризует частоту появления новых особей. Под рождаемостью понимают количество особей (яиц, семян, эмбрионов), производимых в единицу времени в расчете на одну самку. Близкое к приведенному определение приводится А. М. Гиляровым: «рождаемость определяют как число особей (яиц, семян и т. д.), родившихся (отложенных, продуцированных) в популяции за некоторой промежуток времени». Различают максимальную (абсолютную, физиологическую, предельно-возможную) рождаемость и реализуемую (экологическую) рождаемость, или просто рождаемость.
Максимальная рождаемость – это образование теоретически максимально возможного количества новых особей в идеальных условиях, когда отсутствуют лимитирующие факторы и размножение ограничивается лишь физиологическими факторами. У каждой данной популяции эта величина постоянная, она характеризует динамическую, эволюционно приобретенную силу вида. Реализуемая рождаемость – это увеличение популяции за счет появления на свет новых особей при фактических, реальных условиях среды. Данная величина может варьировать в зависимости от физических, химических и прочих условий среды.
Показатель смертности характеризует гибель особей в популяциях. По определению, смертность – это количество особей, умирающих в единицу времени в расчете на особь в популяции. Учитываются все погибшие особи независимо от причины смертности (старость, элиминация хищниками, болезнями и т. д.) Существует некая теоретическая максимальная смертность – постоянная величина, которая характеризует гибель особей в идеальных условиях, когда популяция не подвергается воздействию лимитирующих факторов. Практически более важна реализуемая (экологическая) смертность, т. е. величина, которая подобно экологической рождаемости, зависит от реальных условий биотической и абиотической среды.
Представляет интерес величина, связанная со смертностью, обратная ей – выживаемость, т. е. число или доля выживших особей.
Разность между рождаемостью и смертностью есть некий результирующий параметр, который определяет реальную динамику численности у данной популяции. Популяция может находиться в состоянии динамического равновесия, если естественная убыль особей равна их возобновлению. Существенно то, что антропические воздействия на популяцию могут изменять как рождаемость, так и смертность (например, увеличивать смертность особей данного вида).
Величина прироста популяции за единицу времени в расчете на одну особь представляет скорость роста популяции. По мере роста популяции происходит снижение доступных каждой особи ресурсов среды. При истощении ресурсов рост популяции тормозится и в конце концов прекращается. Популяции разных видов обладают удивительной способностью к быстрому росту численности. Этот вопрос рассматривали Аристотель (4 в. до н.э.), Макиавелли (около 1525 г.), позднее Бюффон (1751 г.). Ч. Дарвин обратил внимание на многочисленные случаи поразительно быстрого размножения некоторых животных в природном состоянии, когда условия особенно благоприятствовали. Он распространил идею геометрического роста, когда численность популяции растет в геометрической прогрессии (в этом случае график увеличения числа особей в ряде поколений представляет собой экспоненциальную, или логарифмическую, кривую) на все виды животных и растений, положив постулат о высоком репродуктивном потенциале видов в основу своей теории естественного отбора.
Заслуживает внимания рост народонаселения в глобальном масштабе. В ранние исторические времена прирост населения за поколение (20 лет) составлял 1,2%, в 17 в. он повысился до 7,2%, к 1930 г. достиг – 36%, причем в наше время нет признаков того, что кривая роста приближается к какому-то уровню насыщения. Поскольку с увеличением числа людей на нашей планете также увеличивается потребление продуктов питания, использование естественных источников сырья, загрязнение среды обитания и т. д., все изменения в динамике численности человечества обусловливают вышеназванные явления. Ограничение роста населения является важным шансом выживания человечества (Г. А. Галковская, 2001).
Кроме рассмотренных характеристик – рождаемости, смертности, скорости роста на величину популяцию влияют эмиграция, иммиграция и общая миграция.
Миграция – это особый случай перемещения особей, когда почти вся популяция на время уходит из определенного района. Сезонные или суточные миграции позволяют организмам использовать оптимальные условия среды в таких местах, где они не могли бы жить постоянно. Перебираясь с места на место вслед за перемещением оптимальных условий, такие виды могут сохранять высокую активность, поддерживать большую плотность популяции и в те периоды, когда немигрирующие виды переходят в неактивное состояние (в состояние диапаузы или зимней спячки).
В динамике численности популяций большую роль играют межвидовые отношения, что издавно вызывало у экологов большой интерес и способствовало разработке теорий взаимоотношений конкурирующих видов, хищника и жертвы, паразита и хозяина. Широкую известность получили работы А. Лотки (1923, 1925 гг.) и В. Вольтерры (1926 г.). Вольтерра проанализировал взаимоотношения между конкурирующими видами, разработал математическую модель в системе жертва – хищник. Пользуясь уравнениями, предложенными Вольтеррой, можно определять условия, при которых устанавливается равновесие между плотностями популяций жертвы и хищника, то есть система жертва – хищник становится стабильной. Лотка предложила математическую модель взаимодействия животных в системе паразит – хозяин, показала, что истребление особей хозяина паразитами является функцией численности не только паразитов, но и хозяев. Лотка сделала заключение, что той или иной численности хозяина соответствует определенная численность паразита. По мере возрастания плотности популяции хозяина увеличивается плотность популяции паразита. Повышение же численности паразита приводит к снижению численности хозяина, а последнее опять снижает количество паразитов. И так волна за волной происходят периодические колебания численности популяций хозяина и паразита с небольшими отклонениями от какого-то оптимального уровня. Здесь действует динамическая саморегулирующаяся система. Модель взаимодействия популяций в системе паразит – хозяин соответствует модели взаимодействия хищника и его жертвы. Уравнения, предложенные Лоткой и Вольтеррой можно использовать для моделирования взаимоотношений в указанных системах, определять, какой должна быть плотность каждой популяции, чтобы другая не имела возможности увеличивать свою численность.
Изучение хищничества, паразитизма как факторов, регулирующих численность популяций, влияющих на их величину, показывает, что отрицательное влияние хищников, паразитов обычно не велико, если оба вида – хищник и его жертва, хозяин и паразит – существуют совместно уже на протяжении длительного времени. Известно много ярких примеров, касающихся паразитизма. Так, у коренных жителей Африки выработался относительный иммунитет к малярии, и это обеспечивает выживание как паразита – малярийного плазмодия, так и хозяина – человека. Трипаносома, вызывающая сонную болезнь у человека, живет в крови своих основных хозяев – крупных травоядных животных, не причиняя им вреда. Заражение человека лентецами в обычных условиях не приводит к смерти. Однако в любом из этих случаев установившееся тонкое равновесие может быть нарушено в результате каких-то изменений в экосистеме или иных событий. Серьезные последствия возникают, в частности, когда хищник и жертва (или паразит и хозяин) встречаются друг с другом впервые. Если экосистема, в которую они входят, будет выведена из равновесия, хищники и паразиты могут вызвать резкие изменения численности популяции.
В природе действуют другие факторы, влияющие на динамику численности популяций. Связано это со следующими причинами. Для некоторых видов решающее значение имеют физические факторы. Численность особей в популяциях могут лимитировать такие факторы, как нехватка природных ресурсов (например, пищи или мест, пригодных для размножения), недоступность этих ресурсов и недостаток времени для размножения (короткий влажный сезон, короткий день, например в Арктике).
У крупных организмов, жизненные циклы которых довольно продолжительны, размеры популяций определяются не столько физической средой, сколько взаимодействием между отдельными особями или взаимоотношениями их с конкурентами, хищниками и паразитами.
Из внутренних факторов на величину популяции могут оказывать влияние различные физиологические или поведенческие факторы, а иногда те и другие одновременно. Если, например, плотность популяции какого-нибудь грызуна чрезмерно возрастает, то животные чаще встречаются между собой. Возникают драки, условия жизни в целом становятся более напряженными («стрессовыми»), и это ведет к увеличению надпочечников; связанное с этим нарушение гормонального баланса отрицательно сказывается на спаривании и размножении; кроме того, при скученности возрастает смертность.
Любой фактор как регулятор численности популяций – лимитирующий или благоприятный – является либо независимым от плотности (НП), либо зависимым от плотности (ЗП). Влияние факторов ЗП может быть прямым, то есть усиливаться с увеличением плотности, и обратным. Факторы, для которых характерно прямое влияние, еще называют «управляющими плотностью» (в частности, это один из главных механизмов, предотвращающих перенаселение). Как правило, НП – абиотические факторы (климатические, химические, физические и т. п.), ЗП – биотические факторы (конкуренция, паразиты, патогенные организмы, влияние эндо- и экзометаболитов). НП-факторы могут вызывать драматические изменения плотности, смещение уровня емкости экологической ниши. Роль НП-факторов более выражена в нестабильных системах, а ЗП-факторов – в стабильных. Одновременное действие НП- и ЗП-факторов обнаружено при изучении динамики популяций моллюска Acmaea, живущего на камнях в литоральной зоне морей. Динамика популяции этого моллюска регулируется, главным образом, ее плотностью (ЗП). Однако известны случаи увеличения смертности после суровых зим (НП), когда разрушается субстрат, на котором оседают моллюски, что является основной причиной смертности.
Таким образом, колебания численности природных популяций («волны жизни»), их величина обусловлены сложным взаимодействием факторов – естественного темпа размножения того или иного вида, «сопротивления» среды, отношениями между хищником и жертвой, паразитом и хозяином, физиологической и поведенческой реакцией на перенаселенность и др., в целом, многими воздействиями со стороны как живой, так и неживой природы. В итоге, регуляция численности популяций осуществляется факторами внешней среды и внутрипопуляционными факторами, преимущественно через рождаемость и смертность, представляя собой результат взаимодействия их со всеми условиями существования.
«Волны жизни» резко осложняют планирование эксплуатации данной популяции, поскольку ежегодное изъятие (отстрел, промысел) одного и того же числа особей может означать, что в один год будет изъято, скажем, лишь 5% особей, а в другой год, когда численность популяции упадет в 10 раз, – 50% особей от существующего состава популяции. Кроме того, колебания численности призывают человека увеличить минимальную теоретически допустимую численность популяции.
Популяции животных, растений, грибов и микроорганизмов обладают способностью к естественному регулированию численности, то есть при более или менее значительных колебаниях они остаются в состоянии динамического равновесия, на каком-то уровне между верхним и нижним пределами. Это обеспечивается действием специфических приспособительных механизмов, основанных на том, что поступление энергии, необходимой для выживания популяции, не превышает некоторого уровня и обеспечивает, таким образом, размеры данной популяции. Способность популяции поддерживать устойчивость благодаря способности к саморегулированию через собственные регулирующие механизмы называется гомеостазом популяции. Так, рост численности популяции приводит к истощению запасов пищи, за которым следует снижение рождаемости организмов, увеличение их смертности (отрицательные связи), а, следовательно, и снижение численности. Последнее, в свою очередь, увеличивает запасы пищи, что вызывает рост рождаемости и численности популяции (положительные связи). Равновесное состояние популяции (состояние динамического равновесия) является кратковременным и достигается за счет быстрого чередования положительных и отрицательных обратных связей.
Для оптимизации отношений человека с природой важно учитывать численность популяции, принимать во внимание то, что на численность популяции может повлиять истощение нужных ей ресурсов из-за сокращения кормовой базы, конкуренция со стороны домашних животных, вытаптывание почвы и ухудшение ее аэрации, снижение кислорода в воде при загрязнении и евтрофировании. Человек может искусственно регулировать численность популяций, например, животных путем запрещения охоты или ограничения ее сроков на некоторые виды, ввода лицензий. Это уже дало положительные результаты – предотвратило от истребления ряд видов, в частности, лося, бобра, зубра. Ведя борьбу с вредителями сельского и лесного хозяйств, опасными для жизни видами, человек ограничивает численность их популяций.
В целом, численность популяции, скорость ее роста (в более общем смысле – скорость ее изменения, динамика численности) являются весьма лабильными параметрами, высокочувствительными к воздействию абиотических, биотических, антропических факторов. Поэтому человек должен хорошо представлять все особенности той популяции, которая эксплуатируется, чтобы обеспечить воспроизводство, стабильное длительное ее существование. Сложность этой задачи увеличивается в силу многочисленных связей между популяциями разных видов, населяющих одну территорию.