Чем описывается положение объекта в геодезической системе координат
Системы координат в геодезии — какие бывают и как используются?
В данной статье мы разбираем основные вопросы по геодезии. Что такое системы координат, какие виды СК выделяют, какие из них используются на практике и для чего. А также, отвечаем на вопрос, почему мы предоставляем поправки в международной системе координат.
Содержание статьи:
Надеемся, этот материал поможет получить ответы на интересующие вопросы.
Что такое система координат?
Система координат (СК) — это набор математических правил, описывающих, как координаты должны быть соотнесены с точками пространства.
Иными словами, это совокупность условий, определяющих положение и перемещение точки или объекта на прямой, на плоскости, в пространстве с помощью чисел или других символов.
Совокупность чисел, определяющих положение точки, называется координатами этой точки.
Какие бывают системы координат?
Существуют разные геодезические системы координат, они используются в зависимости от масштаба, в котором необходимо произвести расчет расположения объекта на Земле.
В рамках данной статьи, разберемся, какие именно бывают системы координат и как используются на практике в геодезии.
Полярная система координат (полярные координаты)
Полярная система координат — это система координат, положение точки в которой задается расстоянием и направлением от ее начала.
Двумерная полярная система координат может быть задана на плоскости, поверхности сферы или эллипсоида.
Плоская прямоугольная (прямолинейная система координат)
Плоская прямоугольная (прямолинейная) система координат — это система координат, определяющая положение точек по отношению к взаимно перпендикулярным осям, исходящим из ее начала.
Координаты точки в данной системе координат представлены в виде плоских прямоугольных координат x и y. В геодезии — это координаты на плоскости, на которой отображена поверхность земного эллипсоида в заданной картографической проекции.
Прямоугольная пространственная система координат
Прямоугольная пространственная система координат — это система трехмерных линейных прямоугольных координат по координатным осям Х, У, Z координат, у которой оси Х и У лежат в экваториальной плоскости, ось Х направлена к начальному меридиану, ось Z направлена на север, орты образуют правую тройку векторов, а начало координат совпадает с центром земного эллипсоида.
Координаты точки в пространственной системе координат представлены в виде геодезических (эллипсоидальных) координатах или в прямоугольных пространственных координатах.
Земные и референцные системы координат
Помимо вышеупомянутых, различают земные (общеземные) и референцные системы координат. Разбираемся, чем они отличаются.
Что такое земная система координат в геодезии?
Земная система координат — это пространственная система координат, предназначенная для количественного описания положения и движения объектов, находящихся на поверхности Земли и в околоземном пространстве.
Что такое референцная система координат в геодезии?
Референцная система координат — это система координат, созданная с целью обеспечения геодезических и картографических работ на конкретной территории. К ним можно отнести местные и условные системы координат.
Что такое геодезическая система координат?
Геодезическая система координат — это система координат, которая используется для определения точного местоположения объекта на земном шаре.
За земной шар, для удобства проведения математических расчетов в инженерной геодезии, принимают шар с R=6371.11 км. Объем земного шара при этом равен объему земного эллипсоида.
Что такое геодезические координаты?
Геодезические координаты — это величины, два из которых (геодезическая широта B и геодезическая долгота L) характеризуют направление нормали к поверхности отсчетного эллипсоида в данной точке пространства относительно плоскостей его экватора и начального меридиана, а третий (геодезическая высота H) представляет собой высоту точки над поверхностью отсчетного эллипсоида.
В земных системах координат центр координат совпадает с центром масс Земли, поэтому прямоугольные пространственные координаты называют геоцентрическими координатами.
Системы координат также подразделяют на государственные, местные, локальные и международные.
СК, используемые на практике
Практическими реализациями пространственной геоцентрической земной системы координат являются системы координат WGS-84, ПЗ-90.11 и ГСК-2011.
Система координат WGS-84
WGS-84 (World Geodetic System (Всемирная геодезическая система координат)) – это система геодезических параметров Земли 1984 года, используемая в GPS, в число которых входит система геоцентрических координат).
Система координат ПЗ-90.11
ПЗ-90.11 (общеземная геоцентрическая система координат «Параметры Земли 1990 года») — это государственная система координат, используемая в ГЛОНАСС.
ПЗ-90.11 была установлена постановлением Правительства РФ от 24 ноября 2016 года №1240 для использования в целях геодезического обеспечения орбитальных полетов, решения навигационных задач и выполнения геодезических и картографических работ в интересах обороны Российской Федерации.
Система координат ГСК-2011
ГСК-2011 (геодезическая система координат 2011 года) – это государственная система координат, установленная постановлением Правительства РФ от 24 ноября 2016 года №1240 для использования при осуществлении геодезических и картографических работ на территории Российской Федерации.
Система координат МСК
МСК – это местная система координат субъекта Российской Федерации, установленная для целей обеспечения проведения геодезических и картографических работ при осуществлении градостроительной и кадастровой деятельности, землеустройства, недропользования и иной деятельности.
Каждый субъект имеет свою МСК с номером данного субъекта, например, местная система координат Московской области именуется МСК-50.
Архивные системы координат
Существуют архивные системы координат, которые в настоящее время не используются (не действуют).
Среди них можно выделить:
Какие бывают системы отсчета высот?
Высоты в геодезии могут быть представлены в виде геодезических, ортометрических и нормальных и высот. Высоты также могут быть представлены в условной системе высот.
Основные системы отсчета высот:
Отсчет высот в Балтийской системе высот 1977 года ведется от нуля Кронштадтского футштока, укрепленного в устое моста через обводной канал в г. Кронштадте.
Почему мы предоставляем поправки в международной системе координат?
Поскольку ГНСС работают в реализациях земной геоцентрической системы координат, таких как WGS-84 и ПЗ-90.11, то первоначально все спутниковые определения с использованием ГНСС выполняются в этих системах координат.
В ГНСС аппаратуре и программном обеспечении все результаты (координаты, скорости, ускорения) вначале приводятся в WGS-84, которые можно представить в любой другой системе координат путем математических преобразований.
Координаты в пространственных земных системах WGS-84, ПЗ-90.11 или ГСК-2011 с точностью 1 метр практически совпадают, поэтому для спутниковых определений с такой точностью не имеет значения в какой из реализаций системы координат они представлены.
Для спутниковых определений с высокой точностью мы предоставляем дифференциальные поправки, которые применяются к измеряемым величинам в процессе спутниковых определений. Дифференциальные поправки позволяют определить пространственные координаты относительно спутниковых базовых станций с заданными координатами.
Поскольку в нашей сети координаты всех станций определены в международной системе координат WGS-84, координаты определяемых вами точек также первоначально представлены в WGS-84. Но, как уже было сказано выше, они могут быть преобразованы в любую системы координат по известным параметрам преобразования.
Система координат, виды и классификация
Пойдем прямым логическим путем, не отвлекаясь на многие современные международные и отечественные научные термины. Систему координат можно изобразить как некую систему отсчета ориентированную на плоскости двумя направлениями, а в пространстве тремя. Если вспомнить математическую систему, то она представлена двумя взаимно перпендикулярными направлениями, имеющими названия осей абсцисс (X) и ординат (Y). Ориентированы они в горизонтальном и вертикальном направлениях соответственно. Пересечение этих линий является началом координат с нулевыми значениями в абсолютной величине. А местоположение точек на плоскости определяется при помощи двух координат X и Y. В геодезии ориентирование осей на плоскости отличается от математики. Плоскостная прямоугольная система определена осью X в вертикальном положении (в направлении на север) и осью Y в горизонтальном (в направлении на восток).
Классификация систем координат
В геодезии все системы координат можно представить в виде двух групп:
В обеих группах выделяют как плоские (двухмерные), так и пространственные (трехмерные) системы.
К прямолинейным прямоугольным системам относятся цилиндрическая проекция Гаусса-Крюгера, индивидуальные референцные и местные системы координат.
К полярным системам можно отнести географическую, астрономическую и геодезическую, геоцентрические и топоцентрические системы.
Географическая система координат
Замкнутая поверхность внешнего контура Земли представлена сфероидной геометрической формой. За основные направления ориентирования на ней можно принять дуги на поверхности шара. На упрощенно представленном уменьшенном макете нашей планеты в виде глобуса (фигура земли) можно зрительно увидеть принятые линии отсчета в виде Гринвичского меридиана и экваториальной линии.
В этом примере выражена общепринятая во всем мире именно пространственная система географических координат. В ней введены понятия долготы и широты. Имея градусные единицы измерения, они представляют угловую величину. Многим знакомы их определения. Следует напомнить, что географическая долгота конкретной точки представляет угол между двумя плоскостями, проходящими через нулевой (Гринвичский) меридиан и меридиан в определяемой точке расположения. Под географической широтой точки принят угол, образующийся между отвесной линией (или нормалью) к ней и плоскостью экватора.
Понятия астрономической и геодезической системы координат и их различия
Географическая система условно объединяет астрономическую и геодезическую системы. Для того чтобы было понятно какие все-таки существуют различия обратите внимание на определения геодезических и астрономических координат (долготы, широты, высоты). В астрономической системе широта рассматривается как угол между экваториальной плоскостью и отвесной линией в точке определения. А сама форма Земли в ней рассматривается как условный геоид, математически приближенно приравненный к сфере. В геодезической системе широта образовывается нормалью к поверхности земного эллипсоида в конкретной точке и плоскостью экватора. Третьи координаты в этих системах дают окончательное представление в их различиях. Астрономическая (ортометрическая) высота представляет собой превышение по отвесной линии между фактической и точкой на поверхности уровенного геоида. Геодезической высотой считается расстояние по нормали от поверхности эллипсоида до точки вычисления.
Система плоских прямоугольных систем координат Гаусса-Крюгера
Каждая система координат имеет свое теоретическое научное и практическое экономическое применение, как в глобальном, так и региональном масштабах. В некоторых конкретных случаях возможно использование референцных, местных и условных систем координат, но которые через математические расчеты и вычисления все равно могут быть объединены между собой.
Геодезическая прямоугольная плоская система координат является проекцией отдельных шестиградусных зон эллипсоида. Вписав эту фигуру внутрь горизонтально расположенного цилиндра, каждая зона отдельно проецируется на внутреннюю цилиндрическую поверхность. Зоны такого сфероида ограничиваются меридианами с шагом в шесть градусов. При развертывании на плоскости получается проекция, которая имеет название в честь немецких ученых её разработавших Гаусса-Крюгера. В таком способе проецирования углы между любыми направлениями сохраняют свои величины. Поэтому иногда ее называют еще равноугольной. Ось абсцисс в зоне проходит по центру, через условный осевой меридиан (ось X), а ось ординат по линии экватора (ось Y). Длины линий вдоль осевого меридиана передается без искажений, а вдоль экваториальной линии с искажениями к краям зоны.
Полярная система координат
Кроме выше описанной прямоугольной системы координат следует отметить наличие и использование в решении геодезических задач плоской полярной системы координат. За исходное отсчетное направление в ней применяется ось северного (полярного) направления, откуда и название. Для определения местоположения точек на плоскости используют полярный (дирекционный) угол и радиус-вектор (горизонтальное проложение) до точки. Напомним, что дирекционным углом считается угол, отсчитываемый от исходного (северного) направления до определяемого. Радиус-вектор выражается в определении горизонтального проложения. К пространственной полярной системе добавляется геодезические измерения вертикального угла и наклонного расстояния для определения 3D-положения точек. Этот способ практически ежедневно применяется в тригонометрическом нивелировании, топографической съемке и для развития геодезических сетей.
Геоцентрические и топоцентрические системы координат
По такому же полярному методу частично устроены и спутниковые геоцентрическая и топоцентрическая системы координат, с той лишь разницей, что основные оси трехмерного пространства (X, Y, Z) имеют отличные начала и направления. В геоцентрической системе началом координат является центр масс Земли. Ось X имеет направление по Гринвичскому меридиану к экватору. Ось Y располагают в прямоугольном положении на восток от X. Ось Z изначально имеет полярное направление по малой оси эллипсоида. Координатами в ней считаются:
При наблюдении за движением спутников из точки стояния на земной поверхности используют топоцентрическую систему, оси координат которой расположены параллельно осям геоцентрической системы, а ее началом считается пункт наблюдения. Координаты в такой системе:
В современные спутниковые глобальные системы отсчета WGS-84, ПЗ-90 входят не только координаты, но и другие параметры и характеристики важные для геодезических измерений, наблюдений и навигации. К ним относятся геодезические и другие константы:
Чем описывается положение объекта в геодезической системе координат
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГЕОГРАФИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
Координатная основа. Общие требования
Geographical information systems. Coordinate frame. General requirements
Дата введения 2007-01-01
Предисловие
1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Государственный научно-внедренческий центр геоинформационных систем и технологий» (ФГУП «ГОСГИСЦЕНТР»), Федеральным государственным унитарным предприятием «Центральный ордена «Знак Почета» научно-исследовательский институт геодезии, аэросъемки и картографии им.Ф.Н.Красовского» (ФГУП «ЦНИИГАиК») и Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 394 «Географическая информация/геоматика»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 28 августа 2006 г. N 215-ст*
6 ПЕРЕИЗДАНИЕ. Октябрь 2018 г.
1 Область применения
Стандарт предназначен для применения организациями и предприятиями, создающими ГИС различного назначения, базы и банки пространственных данных.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р 52438-2005 Географические информационные системы. Термины и определения
ГОСТ 8.417 Государственная система обеспечения единства измерений. Единицы величин
ГОСТ 22268 Геодезия. Термины и определения
ГОСТ Р 57773 (ИСО 19157:2013) Пространственные данные. Качество данных
3 Термины и определения
В настоящем стандарте применены термины по ГОСТ 22268, ГОСТ Р 52438-2005, а также следующие термины с соответствующими определениями:
3.1 абсцисса : Линейное расстояние в системе координат картографической сетки от отсчетной линии восток-запад, к северу положительное и к югу отрицательное.
3.2 большая полуось : Максимальный радиус эллипсоида.
3.3 высотные (вертикальные) даты: Набор параметров, описывающих отнесение высот, связанных с гравитационным полем, к поверхности Земли.
3.4 высота: Расстояние от отсчетной поверхности до выбранной точки по нормали к этой поверхности.
3.5 нормальная высота : Разность геопотенциала в данной точке и в начале счета высот, деленная на среднее значение нормальной силы тяжести на отрезке силовой линии нормального поля, соответствующем определяемой высоте.
3.6 высота квазигеоида: Разность между геодезической высотой и нормальной высотой.
3.7 геодезическая высота : Расстояние от эллипсоида до точки на физической поверхности Земли по нормали к его поверхности.
3.8 геодезическая долгота : Двугранный угол между плоскостями начального меридиана и меридиана данной точки, положительный при направлении на восток.
3.12 геодезические даты: Набор параметров, описывающих связь координатной системы с Землей.
3.13 геоид: Уровенная поверхность, наилучшим образом аппроксимирующая уровень моря как в локальном, так и в глобальном случаях.
3.14 геопотенциал: Реальный потенциал силы тяжести Земли.
3.15 Гринвичский меридиан: Меридиан, проходящий через плоскость большого круга пассажного инструмента в Королевской обсерватории Гринвича Соединенного королевства Великобритании.
3.16 исходные даты: Термин, обобщающий геодезические, высотные и местные даты.
3.18 квазигеоид: Геометрическое место точек, получаемых путем откладывания нормальных высот по силовым линиям нормального гравитационного поля от точек физической поверхности Земли; высоты квазигеоида отсчитывают от поверхности эллипсоида.
3.20 координатная основа: Совокупность данных, обеспечивающих описание местоположения с использованием координат.
3.21 координатная система отсчета: Система координат, связанная (для задач, регламентируемых настоящим стандартом) с Землей исходными датами.
3.22 малая полуось : Полярная ось эллипсоида.
3.23 меридиан: Сечение эллипсоида плоскостью, содержащей малую полуось эллипсоида.
3.24 местные даты: Даты с местной привязкой начальной точки.
3.25 начальный меридиан: Меридиан, от которого отсчитывают долготы или другие меридианы.
3.26 нормальный потенциал: Потенциал силы тяжести нормального эллипсоида.
3.27 нормальный эллипсоид: Эллипсоид вращения, создающий гравитационное поле, максимально близкое к гравитационному полю Земли.
3.28 операции с координатами: Изменение координат пространственных объектов с использованием их математической связи при переходе от одной системы координат к другой.
3.29 ордината : Линейное расстояние в системе координат или картографической сетки по направлениям на восток (положительное) или запад (отрицательное) от отсчетной линии север-юг.
3.30 отсчетная линия: В системе координат линия, от которой отсчитывают координаты.
3.31 отсчетная поверхность: В системе координат геометрическая поверхность, от которой отсчитывают координаты.
перевычисление координат: Операция с координатами пространственных объектов, основанная на математически строго определенной связи, при переходе из одной системы координат в другую, используя одни и те же исходные геодезические даты.
3.33 полярная система координат: Система координат, в которой положение объекта задается расстоянием и направлением от ее начала.
3.34 прямоугольная система координат: Система координат, определяющая положение точек по отношению к взаимно перпендикулярным осям, исходящим из одной точки.
3.35 сжатие : Отношение разности между большой и малой полуосями к большой полуоси эллипсоида, вычисляемое по формуле .
3.36 составная система координат: Описание местоположения с использованием двух независимых систем координат.
3.37 система координат: Набор математических правил, описывающих, как координаты должны быть соотнесены с точками пространства.
GIS-LAB
Географические информационные системы и дистанционное зондирование
Геодезические системы пространственных координат
Рассматриваются преобразования между пространственными координатными системами. Приводится пример программной реализации на языке Питон.
Содержание
[править] Земной эллипсоид
Земным эллипсоидом называется эллипсоид вращения, поверхность которого по форме и размерам довольно близка к поверхности геоида.
Поверхность эллипсоида образуется вращением эллипса вокруг его малой оси, которая также является осью вращения эллипсоида.
Эллипс обычно определяется размером его большой полуоси a и сжатием f. Реже вместо сжатия задаётся размер малой полуоси b:
В теории и практике вычислений широко используются такие параметры, как полярный радиус кривизны поверхности c, первый эксцентриситет e и второй эксцентриситет e′:
Пример функции Питона, вычисляющей по a и f параметры b, c, e и e′:
[править] Системы координат
Рассмотрим следующие системы координат.
Помимо широкого использования в геодезических целях, каждая из представленных координатных систем находит важное применение в прикладных областях.
Геодезические координаты со времён седой древности используются в навигации и картографии. В картографии они являются основой построения проекций.
Геоцентрическая система координат необходима для вычисления спутниковых орбит и решения других орбитальных задач.
Проекции, используемые картографами различных стран, основаны на различных геодезических датумах, т.е. созданы на различных эллипсоидах с разными размерами, положением центров и ориентацией осей в пространстве. Самый простой и точный способ пересчёта координат, заданных в разных датумах, зиждется на преобразованиях между геодезическими и геоцентрическими системами. В общем случае схема пересчёта координат между двумя проекциями выполняется в пять этапов:
Топоцентрическая система координат — естественная система для работы различных наземных объектов: ракетных стартовых комплексов, станций слежения за спутниками, станций ПВО и других измерительных комплексов. Естественно, собираемая информация в каждом случае преобразуется в общую систему координат, связанную с Землёй — геодезическую систему координат.
[править] Преобразования координат
[править] Переход от геодезических координат к геоцентрическим
Это преобразование выполняется по следующим формулам:
Здесь N — так называемый радиус кривизны первого вертикала:
Реализация на Питоне:
[править] Переход от геоцентрических координат к геодезическим
Проще всего вычисляется долгота:
Сложнее с определением широты и высоты. Существует множество способов решения этой задачи. Воспользуемся итеративным методом Боуринга.
В начале находится предварительная оценка широты B:
Здесь r — геоцентрический радиус-вектор, p — расстояние от оси вращения эллипсоида:
Затем вычисляется параметр θ (приведённая широта) и получается уточнённое значение широты:
Действия по последним двум формулам предполагается повторять до сходимости к требуемой точности. Как правило, бывает достаточно одной итерации. В примере реализации метода Боуринга, приведённом ниже, запрограммировано две итерации.
В конце определяется высота:
[править] Переход от геоцентрических координат к топоцентрическим
Постановка задачи: начало топоцентрической системы координат задано точкой Q₀ (B₀, L₀, H₀); по геоцентрическим координатам точки Q (x, y, z) вычислить её топоцентрические координаты.
Конформное преобразование между двумя декартовыми прямоугольными системами координат всегда может быть представлено последовательностью сдвигов и вращений координатной системы. Данное преобразование можно реализовать по следующему алгоритму:
Функция toTopo() содержит обращения к функции вращения rotate():
[править] Переход от топоцентрических координат к геоцентрическим
Постановка задачи: начало топоцентрической системы координат задано точкой Q₀ (B₀, L₀, H₀); по топоцентрическим координатам точки Q (x, y, z) вычислить её геоцентрические координаты.
Алгоритм решения получается обращением алгоритма обратной задачи:
[править] Переход от геодезических координат к топоцентрическим. Обратная пространственная задача
Постановка задачи: начало топоцентрической системы координат задано точкой Q₀ (B₀, L₀, H₀); по геодезическим координатам точки Q (B, L, H) вычислить её топоцентрические координаты x, y, z.
Задача решается последовательным применением готовых алгоритмов:
Рассмотренная задача является разновидностью обратной геодезической задачи в пространстве. Вместо декартовых прямоугольных топоцентрических координат может требоваться вычисление каких-то других связанных с ними величин, например, полярных координат «дальность-азимут-зенитное расстояние», варианты могут быть разные. Однако в большинстве случаев сначала находятся топоцентрические x, y, z, по которым и выводятся искомые значения.
[править] Переход от топоцентрических координат к геодезическим. Прямая пространственная задача
Постановка задачи: начало топоцентрической системы координат задано точкой Q₀ (B₀, L₀, H₀); по топоцентрическим координатам точки Q (x, y, z) вычислить её геодезические координаты B, L, H.
Задача решается через вычисление геоцентрических координат:
Эта задача является разновидностью прямой геодезической задачи в пространстве. Вместо декартовых прямоугольных топоцентрических координат могут задаваться какие-то другие связанные с ними величины, например, полярные координаты «дальность-азимут-зенитное расстояние», варианты могут быть разные. Однако в большинстве случаев сначала находятся топоцентрические x, y, z, по которым и решается задача.
[править] Пример программной реализации
Коды вышеприведённых функций находятся в архиве Spheroid.zip в файле spheroid.py. Напишем программы, которые используют их для преобразования координат.
[править] Пересчёт топоцентрических координат в геодезические
В этом примере программы явно задаются параметры эллипсоида a, f и геодезические координаты начала топоцентрической системы B₀, L₀, H₀. Координаты точек x, y, z читаются из файла данных и пересчитанные значения B, L, H выводятся в консоль.
Этот скрипт находится в архиве Spheroid.zip в файле forwrd3d.py.
Файл данных должен содержать в каждой строке координаты одной точки x, y, z, разделённые пробелом. Создадим файл данных fwd3d.dat:
Выполним скрипт в командной строке:
Координаты на выходе:
Запишем полученные координаты в файл результатов inv3d.dat:
[править] Пересчёт геодезических координат в топоцентрические
В этом примере программы явно задаются параметры эллипсоида a, f и геодезические координаты начала топоцентрической системы B₀, L₀, H₀. Координаты точек B, L, H читаются из файла данных и пересчитанные значения x, y, z выводятся в консоль.
Этот скрипт находится в архиве Spheroid.zip в файле invers3d.py.
Файл данных должен содержать в каждой строке координаты одной точки B, L, H, разделённые пробелом. Используем в качестве файла данных созданный выше inv3d.dat:
Выполним скрипт в командной строке:
Координаты на выходе:
[править] Ссылки
Последнее обновление: 2017-03-07 09:34
Дата создания: 23.03.2014
Автор(ы): ErnieBoyd