Чем опасны токи обратной последовательности для генераторов

10-1. Повреждения и ненормальные режимы работы синхронных генераторов. Типы защит генераторов

а) Повреждения обмотки статора

Многофазные короткие замыкания относятся к наиболее тяжелым повреждениям генератора. Они сопровождаются большими токами, в несколько раз превышающими номинальный ток генератора. Для защиты от многофазных коротких замыканий, вызывающих значительные разрушения в статоре, на всех генераторах мощностью выше 1 000 кВт при наличии выводов отдельных фаз со стороны нейтрали устанавливается продольная дифференциальная защита, действующая на отключение генератора.

На генераторах малой мощности для защиты от многофазных коротких замыкании допускается применение более простых устройств: максимальной токовой защиты или отсечки, установленной со стороны выводов генератора, а также автоматов или плавких предохранителей.

Однофазные замыкания на землю (корпус генератора) в крупных генераторах напряжением 3 кВ и выше, работающих с изолированной нейтралью, сопровождаются прохождением в месте повреждения небольших токов по сравнению с токами многофазных коротких замыканий. Однако длительное прохождение тока и горение дуги в месте замыкания на корпус генератора могут привести к выгоранию изоляции и значительному оплавлению активной стали статора, после чего потребуется производить продолжительный ремонт с заменой поврежденной стали.

На основании опыта эксплуатации и специальных испытаний установлено, что при повреждениях в обмотке статора ток замыкания на землю до 5 А не приводит к значительному повреждению стали. Поэтому при токах замыкания на землю в сети генераторного напряжения меньше 5 А защита от однофазных замыканий на землю, как правило, выполняется с действием на сигнал. Если же токи замыкания на землю превышают 5 А, защита должна действовать на отключение генератора.

При возникновении однофазного замыкания на землю в сети генераторного напряжения генераторы мощностью 150 МВт и более должны немедленно разгружаться и отключаться от сети, если не предусмотрено их автоматическое отключение [Л. 41]. Работа генераторов мощностью меньше 150 МВт в указанном режиме допускается в течение времени не более 2 ч. В исключительных случаях допускается работа с замыканием на землю в сети генераторного напряжения до 6 ч.

На генераторах малой мощности напряжением до 500 В, работающих с заземленной нулевой точкой, защита от однофазных коротких замыканий, которые сопровождаются большими токами, действует на отключение.

В статоре генератора могут также возникать замыкания между витками одной фазы. Токи, проходящие при этом в месте повреждения, соизмеримы с токами коротких замыканий между фазами. На генераторах, имеющих выведенные параллельные ветви, для защиты от витковых замыканий устанавливается поперечная дифференциальная защита, действующая на отключение генератора. На генераторах, не имеющих выведенных параллельных ветвей, защита от витковых замыканий не устанавливается, так как выполнение ее в этом случае сравнительно сложно, а также потому, что витковые замыкания в статоре генератора, не сопровождающиеся однофазным замыканием на землю или многофазным коротким замыканием, весьма редки.

б) Повреждения обмотки ротора

Замыкание на землю в одной точке цепи возбуждения не оказывает влияния на нормальную работу генератора, ток в месте повреждения не проходит, и симметрия магнитного потока не нарушается. Однако наличие одного замыкания на землю уже представляет некоторую опасность для генератора, так как в случае замыкания на землю во второй точке цепи возбуждения часть обмотки окажется замкнутой накоротко.

Замыкание на землю в двух точках цепи возбуждения сопровождается сильной вибрацией из-за несимметрии магнитного потока. Дуга в месте замыкания может привести к значительному повреждению обмотки и стали ротора. Из-за сильной вибрации замыкание на землю в двух точках цепи возбуждения особенно опасно для синхронных машин с выступающими полюсами, какими являются гидрогенераторы и синхронные компенсаторы. Вследствие этого, как правило, не следует допускать работы гидрогенераторов и синхронных компенсаторов с замыканием на землю в одной точке цепи возбуждения. Необходимо немедленно отключать их и принимать меры к устранению повреждения. Поэтому на машинах с выступающими полюсами предусматривается защита от замыканий на землю в одной точке цепи возбуждения, действующая на сигнал, а защита от двойных замыканий на землю не устанавливается.

Синхронные машины без выступающих полюсов (турбогенераторы) с косвенным охлаждением обмоток ротора в большинстве случаев могут некоторое время работать при наличии двойного замыкания на землю в цепи возбуждения без существенных повреждений. Поэтому турбогенератор при появлении замыкания на землю в цепи возбуждения остается в работе и на нем устанавливается защита от двойных замыканий на землю, которая у большинства машин с косвенным охлаждением обмоток включается с действием на сигнал.

На мощных турбогенераторах с непосредственным охлаждением проводников обмотки ротора защита от двойных замыканий на землю в цепи возбуждения включается с действием на отключение. При первой возможности эти генераторы также необходимо вывести в ремонт.

При работе с замыканием на землю в одной точке обмотки ротора турбогенераторы с ионной или полупроводниковой системами возбуждения необходимо перевести на резервный (машинный) возбудитель.

в) Ненормальные режимы

Перегрузка статора током больше номинального влечет за собой перегрев и разрушение изоляции обмотки, что в результате может привести к короткому замыканию или замыканию на землю.

В эксплуатацию все больше внедряются мощные турбогенераторы с непосредственным, или, как иногда говорят, с форсированным охлаждением обмоток, в которых охлаждающая среда (водород или вода) циркулирует внутри токоведущнх стержней, благодаря чему обеспечиваются лучшие условия охлаждения и более высокие плотности тока. Эти генераторы, имеющие меньшие размеры и лучшие экономические характеристики, выпускаются нашей промыш ленностью четырех типов: ТВФ, ТВВ, ТГВ и ТВМ. Конструкция этих генераторов такова, что они допускают значительно меньшую перегрузку, чем генераторы с косвенным охлаждением.

Данные, определяющие длительность допустимой перегрузки генераторов, приведены в табл. 10-1. Допустимая кратность перегрузки в табл. 10-1 указана относительно длительно допустимого тока (при данных температуре и давлении охлаждающей среды).

Для того чтобы дежурный персонал своевременно принял меры к разгрузке генератора, устанавливается токовая защита от перегрузки, действующая на сигнал. Если токи перегрузки обмотки статора, возникающие в нормальных эксплуатационных режимах, сравнительно невелики, то при внешних коротких замыканиях они могут достигать больших величин. Даже кратковременное прохождение таких токов представляет опасность для обмотки статора.

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Для предотвращения повреждения генератора в случае, если короткое замыкание не будет отключено защитой линий или трансформаторов, служит максимальная токовая защита с пуском по напряжению или без него, действующая на отключение генератора.

Наиболее тяжелые последствия для генератора могут иметь место при внешних несимметричных коротких замыканиях (двухфазных или однофазных). В этом случае неравенство (несимметрия) токов в фазах статора вызывает повышенный нагрев ротора и вибрацию генератора, что может привести к его повреждению. Несимметрия токов статора может возникнуть вследствие обрыва одной из фаз, а также отказа во включении или отключении одной из фаз выключателя.

Допустимая длительность прохождения по генератору тока обратной последовательности может быть определена согласно следующему выражению:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

где tдоп — допустимая длительность прохождения тока обратной последовательности, с; I 2 2* — кратность тока обратной последовательности по отношению к номинальному току генератора; А — постоянная величина для генератора данного типа, значения которой приведены ниже:

для турбогенераторов с косвенным охлаждением типа ТВ2—29, типа ТВ—20;

для. турбогенераторов с непосредственным охлаждением типа ТВФ—15, типа ТГВ-200—11, типа ТГВ-300—8,5, типа ТВВ—7,5;

для гидрогенераторов с косвенным охлаждением — 40.

Защита генератора от внешних несимметричных коротких замыканий и несимметричных режимов осуществляется токовой защитой обратной последовательности, действующей на сигнал и на отключение.

Перегрузка по току ротора генераторов и синхронных компенсаторов с косвенным охлаждением определяется допустимой перегрузкой статора, а для турбогенераторов с непосредственным охлаждением обмотки ротора ограничивается следующими временами [Л. 41]:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Для предотвращения повреждения ротора при перегрузке его обмотки во время форсировки возбуждения на генераторах с непосредственным охлаждением предусматривается автоматическое ограничение длительности форсировки.

С той же целью на турбогенераторах с непосредственным охлаждением, а также на некоторых гидрогенераторах предусматривается защита ротора от перегрузки, действующая на отключение генератора или на отключение АГП (на турбогенераторах) и переводящая генератор в асинхронный режим, если последний допустим.

Повышение напряжения на выводах обмотки статора может привести к пробою изоляции и возникновению в генераторе многофазного короткого замыкания. Опасное для изоляции повышение напряжения возникает на генераторах вследствие исчезновения магнитного потока реакции статора и увеличения скорости вращения агрегата, что происходит при сбросе нагрузки.

На турбогенераторах регулятор скорости предотвращает значительное увеличение скорости, и, кроме того, если скорость вращения превысит 110% номинальной, сработает автомат безопасности и полностью прекратит доступ пара в турбину. Напротив, на гидрогенераторах при сбросе нагрузки могут иметь место увеличение скорости вращения на 40—50% выше нормальной и соответствующее повышение напряжения статора. Поэтому защита от повышения напряжения устанавливается только на гидрогенераторах с действием на отключение генератора и автомата гашения поля (АГП).

К ненормальным режимам относится также работа синхронного генератора без возбуждения (например, при отключении АГП), так называемый асинхронный режим. При работе в асинхронном режиме увеличивается скорость вращения генератора и возникает пульсация тока статора.

Большинство турбогенераторов с косвенным охлаждением, за исключением машин с наборными зубцами роторов, может длительно (до 30 мин) работать в асинхронном режиме с нагрузкой до 60% номинальной.

Для турбогенераторов с непосредственным охлаждением обмотки ротора допускается работа в асинхронном режиме с нагрузкой не более 40% номинальной: серии ТВФ в течение 30 мин, а серий ТВВ и ТГВ — 15 мин.

Асинхронный режим работы гидрогенераторов в большинстве случаев сопровождается значительным понижением напряжения и большими качаниями, при которых ток статора может в несколько раз превышать номинальный. Необходимо поэтому в случае потери возбуждения все гидрогенераторы, а также турбогенераторы, имеющие ослабленную конструкцию (наборный ротор, проволочные бандажи), отключить или немедленно принять меры к восстановлению нормального режима.

В некоторых случаях потеря возбуждения, не представляя опасности для самого генератора, может послужить причиной нарушения устойчивости параллельной работы энергосистемы. Это может случиться, если мощность генератора, потерявшего возбуждение, велика, и энергосистема не может даже кратковременно покрыть дефицит реактивной мощности, возникший вследствие потери возбуждения генератором. В этом случае генератор, потерявший возбуждение, также должен быть немедленно отключен от сети. Это обычно осуществляется с помощью специальной блокировки, отключающей выключатель генератора при отключении АГП. Подобная блокировка выполняется также на синхронных компенсаторах.

Все защиты, действующие на отключение выключателя генератора, одновременно отключают АГП.

Для предотвращения пожара в генераторе, имеющем воздушное охлаждение, дежурный персонал при внутренних коротких замыканиях пускает в генератор воду. На электростанциях без обслуживающего персонала пуск воды в генератор производится автоматически при срабатывании защиты от внутренних коротких замыканий в обмотке статора.

На генераторах, работающих только с водородным охлаждением, установок для тушения пожара не предусматривается, так как водород не поддерживает горения. Для тушения пожара на случай работы этих машин с воздушным охлаждением (если это допускается) применяется углекислота.

Источник

Токовая защита обратной последовательности

Как уже отмечалось, токи обратной последовательности представляют большую опасность для генераторов.

Рассмотренная ранее максимальная токовая защита с пуском по напряжению из-за недостаточной чувствительности токовых реле включенных на фазные токи может не сработать при опасных для генератора токах. Поэтому на генераторах мощностью выше 30 МВт для защиты от внешних несимметричных к.з. применяется токовая защита обратной последовательности.

Схема комбинированной защиты от внешних к.з., состоящей из токовых защит обратной последовательности и максимальной токовой с пуском напряжения приведена на рис. 7-12.

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

При возникновении несимметричного к.з. сработает токовое реле РТ4, включенного на фильтр токов обратной последовательности ФТОП5. Токовое реле РТ9 включенное на фазный ток и реле минимального напряжения РН10, подключенное на междуфазное напряжение, предназначены реагировать на симметричные (3-х фазные) к.з. Обе защиты запускают реле времени РВ7, дающего сигнал на отключение генератора. Более чувствительное реле РТ3, подключенное к ФТОП5 через реле времени РВ6 осуществляет сигнализацию появления длительно недопустимых токов обратной последовательности. Фильтр ФТОП5 может подключаться к 2-м ТТ, так как слагающие нулевой последовательности у нейтрали генератора где устанавливаются ТТ обычно отсутствуют. Промежуточное реле РП11 сигнализирует об исчезновении (неисправностях цепей) напряжения от генераторного ТН.

Ток срабатывания реле РТ4 принимается равным:

Принято выбирать ток срабатывания так чтобы он не превышал величины тока обратной последовательности I2, прохождение которого допустимо для генератора данного типа в течение 2 минут (120 с), при этом должно соблюдаться условие:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

где:
Апостоянная величина для генератора данного типа.

Выбор параметров срабатывания части защиты от симметричных (3-х фазных) к.з. и чувствительной сигнализации при появлении тока обратной последовательности рассмотрены выше.

Схема и характеристика 4-х ступенчатой защиты обратной последовательности с приставкой от симметричных к.з., применяемая на генераторах средней мощности 50-150 МВт, работающих на шины генераторного напряжения, показана на рис. 7-13.

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Три ступени защиты действуют на отключение, четвертая ступень – на сигнал. Каждая ступень имеет своё пусковое токовое реле (Т1, Т2, Т3, Т4) и своё реле времени (В1, В2, В3, В4). Токовые реле подключены к трансформаторам тока в нейтрали генератора через два фильтра токов обратной последовательности типа РТФ-2 и реагируют на ток I2.

Первая ступень (Т1 и В1) предназначена для отключения к.з. на выводах генератора, вторая (Т2 и В2) – для резервирования отключения несимметричных к.з. в сети, третья (Т3, В3) является защитой ротора генератора от несимметричных режимов с токами I2, при которых ликвидация несимметрии вручную невозможна так как допустимое время мало (tдоп I2 длит. доп..

В схеме имеется токовое реле Тn, предназначенное для сигнализации о появлении симметричных перегрузок, а также однофазная максимальная токовая защита с пуском минимального напряжения (Тф, Н, В), действующая при симметричных к.з. Токовое реле Тф, включённое на ток одной из фаз (обычно на ток фазы В) и реле минимального напряжения Н, включённое на одно из междуфазных напряжений (обычно на напряжение а-с) надёжно реагируют на 3-х фазные к.з., поскольку изменение тока и напряжения во всех фазах в этом случае имеет одинаковый характер. Поведение и чувствительность защиты от симметричных к.з. во всём аналогичны МТЗ с пуском по напряжению рассмотренной ранее.

В некоторых случаях для блокировки защиты от замыканий на землю генератора устанавливается дополнительное (пятое) пусковое реле, которое подключается к одному из фильтров ФТОП (на рис. 7-13 не показано).

При выборе уставок ступенчатой токовой защиты обратной последовательности используют тепловую характеристику ротора генератора

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов,

в котором величина А принимается по данным завода-изготовителя генератора.

Ток срабатывания первой ступени должен обеспечивать надёжное действие защиты при 2-х фазных к.з. на выводах генератора. В этом случае наибольший ток обратной последовательности в генераторе будет в режиме работы генератора изолированного от сети. Величина этого тока в относительных единицах будет равна:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

где:
Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторовсверхпереходное реактивное сопротивление генератора
Х2сопротивление обратной последовательности

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторовЧем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

где:
Кч=1,2коэффициент чувствительности.

Выдержка времени первой ступени не должна превышать допустимого времени нагрева ротора при к.з. на выводах генератора:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Ток срабатывания второй ступени выбирается таким образом, чтобы обеспечивалась необходимая чувствительность защиты при несимметричном к.з. за резервируемым элементом (например, за повышающим трансформатором) и сохранялась селективность с защитами смежных элементов, а также, чтобы удовлетворялись требования защиты генератора от тока обратной последовательности.

Ток срабатывания второй ступени выбирается из условия достаточной чувствительности для резервирования смежных присоединений, отходящих от шин генераторного напряжения:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

где:
Iток обратной последовательности при к.з. в конце зоны

Выдержка времени второй ступени должна равняться tдоп при I2*=Iс.з.1, т.е.:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Ток срабатывания третьей ступени выбирают исходя из её назначения – отключать генератор при токах I2 с tдоп£2¸3 мин.

Поэтому: Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Выдержка времени третьей ступени выбирается по tдоп при I2*=Iс.з.2 (точка 2)

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Четвертая ступень должна действовать на сигнал при токе I2>I2 длит.доп. поэтому

Выдержка времени четвёртой ступени должна быть больше времени отключения к.з. в сети и обычно принимается равной:

tс.з.4 = 5¸9с

Ступенчатая токовая защита обратной последовательности позволяет обеспечивать необходимые требования к защите от перегрузки и требования по чувствительности и селективности при внешних к.з.

К недостаткам защиты можно отнести недостаточное использование перегрузочной возможности генератора и неинтегральность независимой от тока характеристики защиты, а также большое количество релейной аппаратуры для реализации ступенчатой характеристики защиты.

На генераторах большой мощности (160 МВт и более) с непосредственным охлаждением проводников обмоток, которые значительно более чувствительны к перегрузкам токами обратной последовательности защита от несимметричных к.з. и перегрузок выполняется с помощью полупроводникового фильтр-реле типа РТФ-6м имеющего интегрально-зависимую характеристику выдержки времени.

Фильтр-реле РТФ-6м содержит следующие элементы: фильтр тока обратной последовательности (ФТОП); сигнальный орган; пусковой орган; орган с интегрально-зависимой характеристикой выдержки времени (интегральный орган) и два органа не имеющие выдержки времени (отсечки). Защита получает питание постоянным током через общий для всех органов блок питания.

Структурная схема фильтр-реле РТФ-6м приведена на рис. 7-14.

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Фильтр тока обратной последовательности предназначен для выявления тока обратной последовательности появляющегося в токе статора генератора при несимметричных к.з. и перегрузках. ФТОП подключается к трансформаторам тока установленным со стороны нулевых выводов обмотки статора.

Сигнальный орган срабатывает без выдержки времени и предназначен для выдачи предупредительного сигнала дежурному персоналу при появлении тока обратной последовательности, превышающего длительно допустимую величину. Ток срабатывания сигнального органа: I2с.з.=0,05Iном.г. Необходимая выдержка времени обычно создаётся с помощью реле времени не входящего в состав фильтр-реле РТФ-6м.

Пусковой орган срабатывает без выдержки времени и используется для подключения (ввода в действие) интегрального органа к ФТОП в случаях появления опасных для генератора значений тока обратной последовательности. Ток срабатывания пускового органа выбирается по условию обеспечения надёжного пуска интегрального органа при его максимальной выдержке времени, равной 600с, что примерно соответствует I2с.з.(П.О.)=0,1Iном.г.

Интегральный орган выполняется с действием на отключение с интегрально-зависимой выдержкой времени, соответствующей кривой tдоп=I(Iг) и настраивается на характеристику перегрузочной способности конкретного генератора.

Интегральный орган срабатывает с выдержкой времени

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

где:
I2*ток обратной последовательности на входе ФТОП в относительных единицах при базовом токе равном Iном.г.

Отсечки используются в качестве резервных защит от несимметричных к.з. (более чувствительная отсечка Iдля дальнего резервирования, а более грубая отсечка IIдля ближнего резервирования). Отсечки в фильтр реле РТФ-6м срабатывают без выдержки времени, поэтому при необходимости отстройки их от времени действия защит смежных элементов используются отдельные реле времени.

Ток срабатывания и выдержка времени органа отсечки Iпредназначенного для резервирования защит смежных присоединений, выбирается, исходя из согласования с защитами этих присоединений. Выдержка времени отсечки Iдолжна быть меньше времени срабатывания интегрального органа при том же токе.

Ток срабатывания органа отсечки II выбирается такой величины, чтобы при 2-х фазном к.з. на выводах генератора действие органа обеспечивалось с коэффициентом чувствительности Кч³2,0:

Чем опасны токи обратной последовательности для генераторов. Смотреть фото Чем опасны токи обратной последовательности для генераторов. Смотреть картинку Чем опасны токи обратной последовательности для генераторов. Картинка про Чем опасны токи обратной последовательности для генераторов. Фото Чем опасны токи обратной последовательности для генераторов

Время действия отсечки IIобычно принимается равным tс.з.II=0,5с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *