Чем объясняется наличие у металлов тепло и электропроводности
Общие свойства металлов. Металлическая связь. Тепло- и электропроводность. Физико-механические и химические свойства металлов.
Общие свойства металлов. Физико-механические и химические свойства металлов.
— Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.
— Электропроводность.Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду Ag,Cu,Al,Fe уменьшается. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».
— Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.
Вытеснение более активными металлами менее активных металлов из растворов их солей:
Fe+ CuSO4 Cu + FeSO4
Металлическая связь— связь между положительными ионами в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.
Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.
Энергия связи — энергия, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.
Теплопроводность Способность тела передавать теплоту от более нагретых его частей менее нагретым Ag, Cu, Au, Al, W, Fe
В ряду наблюдается уменьшение теплопроводности
Электропроводность Свойство вещества проводить электрический ток (обусловлено наличием в нем свободных электронов) Ag, Cu, Au, Al, W, Fe
В ряду наблюдается уменьшение электропроводности.
22 Электро- и теплопроводность металлов и сплавов
1.1. Электро- и теплопроводность металлов и сплавов
Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных свободных валентных электронов. К электронному газу применялись представления и законы обычных газов. Это привело к выводу законов Ома и Джоуля – Ленца, позволило описать и объяснить ранее обнаруженные экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах.
Однако исчерпывающее объяснение явлений электропроводности оказалось возможным на основе квантовой механики. В соответствии с квантово–механическими представлениями причиной наличия электрического сопротивления твердых тел является не столкновение свободных электронов с атомами решетки (как в классической теории Друде), а рассеяние их на дефектах решетки, вызывающих нарушение периодичности потенциала. Идеально правильная, бездефектная неподвижная решетка не способна рассеивать свободные носители заряда и поэтому должна обладать нулевым сопротивлением.
Подвижность и длина свободного пробега электронов в твердом теле зависят от структуры материала. Чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления r. Примеси, искажая решетку, приводят к увеличению r. С позиций квантовой механики рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием порядка четверти длины волны электрона; нарушения меньших размеров не вызывают заметного рассеяния волн де Бройля. В металлическом проводнике, где длина волны электрона порядка 5 Å, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов и длину свободного пробега, и, следовательно, приводят к росту r.
Так как в металлах концентрация электронного газа n практически не зависит от температуры (Т), то зависимость удельного сопротивления r (и обратной величины удельной электропроводности s) от температуры полностью определяется температурной зависимостью подвижности (m) и пропорциональной ей длины свободного пробега электронов (l).
Вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т.е. уменьшается среднестатистическая длина свободного пробега l, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 3.14).
Рис. 3.14. Зависимость удельного сопротивления металлов и сплавов от температуры: 1 – железо; 2 – электротехническая сталь с содержанием 4 % Si; 3 – сплав Fe-Ni-Cr
Удельное сопротивление сплавов
Как указывалось, примеси и нарушения правильной структуры металлов ведут к увеличению их удельного сопротивления.
Теплопроводность и электропроводность
Эти два явления очень похожи друг на друга и в какой-то степени связаны между собой.
Отличие же состоит в том, что при электропроводности НЕ происходит переноса вещества.
Для того чтобы лучше понять суть этих явлений, представим себе «общество» атомов. Если в этом обществе атомы охотно делятся друг с другом пищей (энергией), то такое вещество обладает хорошей теплопроводностью. Если же вместо пищи они дают друг другу знания – как добыть пищу («не рыбу, а удочку»), то это похоже на электропроводность, без переноса вещества.
В обществе, в котором охотно делятся пищей, как правило, охотно делятся и знаниями. Т.е. теплопроводность, как правило, означает и хорошую электропроводность.
Металлы являются проводниками, неметаллы ими не являются. Что их отличает?
Металлы находятся в левой части периодической таблицы. Это значит, что они обладают ядром и очень простой структурой электронного облака. Чем правее находится элемент, тем сложнее его электронная структура, и тем больше неметаллических свойств проявляет элемент.
Становится понятно, почему неметаллы являются плохими проводниками. Они как бы думают: «Мне бы в себе сначала разобраться, где уж мне других поучать?» Их «цель» направлена на то, чтобы достичь целостности и перейти на следующий уровень развития.
Металлы же являются целостными, и даже чувствуют «избыток понимания», которым спешат поделиться.
Чем еще отличается теплопроводность от электропроводности? Последняя имеет направленность (от одного полюса к другому). Теплопроводность не имеет направления.
Металлы ощущаются кожей как прохладные или раскаленные. Они либо активно забирают, либо активно отдают тепло.
Неметаллы ощущаются как нейтральные по своей температуре. Они не забирают, но и не отдают тепло. И это связано с их «характером», с их внутренней сложностью, которая обеспечивает им внутреннюю «широту кругозора». В отличие от металлов, которые имеют всегда четко направленный, но ограниченный «характер».
Конечно, всё это лишь человеческие эмоции и ассоциации, которые облегчают понимание информационных (волновых) свойств различных веществ.
Назовите несколько металлов с наиболее высокой электропроводностью
Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.
Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные. В электротехнике значение имеют 2 термина:
В электротехнике значение имеют 2 термина:
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Самый электропроводный металл в мире
Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро. Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток.
Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл.
На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.
Топ лучших проводников — металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Прием лома никеля по высокой цене
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Факторы, влияющие на проводимость металлов
Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.
Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.
Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.
Как отличается электропроводность разных металлов?
Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.
Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.
Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы — медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.
По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.
Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже — не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.
Классическая теория электропроводности металлов
Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.
Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.
Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.
Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.
Несколько схем транзисторных умзч, хронология радиолюбителя
Примеры применения
Провода.Гибкие многожильные провода различного сечения.Гибкие тоководы.
Теплоотводы.Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.При изготовлении фольгированных печатных плат.Техника сверхвысокого вакуума.Аноды рентгеновских трубок.
Интересные факты о меди
Что учесть при выборе проводки
Медь и алюминий хорошо проводят электрический ток. Большая часть существующей проводки производится из этих металлов. Но между ними существуют отличия. Чтобы решить, какая проводка нужна в вашем случае, необходимо учесть следующие факторы:
Алюминиевый провод, выпущенный несколько десятилетий назад, качественно отличается по механическим свойствам. Даже с учетом пройденного времени, он мягче и удобнее. По этому признаку можно отличить качественную проводку.
Совместимость металлов или как избежать гальванической коррозии?
Лондонская биржа металлов (lme)
Контактная коррозия происходит при непосредственном контакте двух разнородных металлов. Нельзя, к примеру, соединять алюминиевые листы медной заклепкой, так как при определенных условиях они образуют сильную гальваническую пару.
Разные металлы имеют разные электродные потенциалы. В присутствии электролита один из них играет роль катода, а другой анода. В результате химической реакции, протекающей между ними, начнется коррозионный процесс, в котором медь (катод) будет беспощадно разрушать алюминий (анод).
Почти все пары разнородных металлов, находящиеся в контакте между собой, подвержены коррозии, так как даже влага из воздуха может выступить в роли электролита и активировать их электродный потенциал. Но одни пары уязвимы в большей степени, а другие – в меньшей.
Например, алюминий отлично контактирует с оцинкованной сталью, хромом и цинком, а латунь совершенно не «дружит» со сталью, алюминием и цинком. Чтобы узнать, какие металлы совместимы, а какие нет, обратимся к основам химии.
В ряду электрохимической активности металлы стоят в следующей последовательности:
Данные о совместимости некоторых металлов представлены в таблице:
Алюминий | Д | Н | Н | Н | Д | О | О | Д | Д |
Медь | Н | О | О | Д | О | Н | О | Н | Н |
Оцинкованная сталь | Д | О | О | О | Д | О | Д | О | Д |
Свинец | О | О | О | О | Д | Д | Д | О | Д |
Нержавеющая сталь | Д | Н | Н | Н | О | О | О | Д | Н |
Цинк | Д | Н | Н | Н | Д | Н | Д | Н | Д |
– абсолютно допустимые контакты (низкий риск ГК);
О
– ограничено допустимые контакты (средний риск ГК);
Н
– недопустимые контакты (высокий риск ГК).
Приведенная таблица может служить кратким справочником для определения совместимости некоторых конструкционных металлов. Допустимость и недопустимость контактов разнородных в электрохимическом отношении металлов устанавливает ГОСТ 9.005-72.
Сопротивление провода
Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:
где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)
В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:
Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации
Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Рейтинг: 5/5 — 1 голосов
Лучший проводник — тепло — Большая Энциклопедия Нефти и Газа, статья, страница 3
Лучший проводник — тепло
Горолку с пламенем нужно все время сохранять в движении для равномерного нагрева. О степени нагрева изделия лучше всего судить по началу плавления припоя; делать заключения о степени нагрева по цвету нагреваемых деталей нужно с большой осторожностью, так как зрительное восприятие этих цветов в значительной степени зависит от условий освещения рабочего места. При нагревании разнородных металлов или сплавов пламя нужно направлять на тот из них, который является
лучшим проводником тепла. [32]
Характерной особенностью металлов является особый металлический блеск, объясняемый их способностью хорошо отражать свет. Между отражательной способностью металла, его электропроводностью и теплопроводностью существует определенный параллелизм: чем сильнее металл отражает свет, тем лучшим проводником тепла и электричества он является. Так, медь, серебро и золото отличаются наибольшей отражательной способностью, и они же являются лучшими проводниками тепла и электричества. [33]
С внешней стороны металлы характеризуются прежде всего особым, как говорят, металлическим блеском. Причина этого блеска заключается в том, что поверхность металла сильно отражает лучи света. Другим характерным свойством металлов является их способность хорошо проверить тепло и электричество, причем, обычно, чем сильнее металл отражает лучи света, тем
лучшим проводником тепла и электричества он является. Серебро, медь и золото наиболее сильно отражают лучи света; они в то же время обладают наибольшей теплопроводностью и электропроводностью. [34]
Теплопроводностью называется свойство металлов проводить тепло при наг ревании. Чем лучше металл проводит тепло, тем быстрее и равномернее он наг ревается. Теплопроводность металлов имеет большое практическое значение Если металл обладает низкой теплопроводностью, то для полного прогрева oi нуждается в длительном нагревании; при быстром же охлаждении в нем обра зуются трещины. Лучшими проводниками тепла являются чистые металлы — серебро, медь, алюминий. Сталь обладает значительно меньшей теплопровод ностью. [35]
Атомы металлов образуют кристаллическую решетку, в узлах которой, кроме нейтральных атомов, находятся также положительно заряженные ионы, образовавшиеся в результате потери валентных электронов частью атомов. Оторвавшиеся от атомов электроны перемещаются по всему объему металла и не принадлежат какому-либо определенному атому. Благодаря наличию легко перемещающихся электронов металлы хорошо проводят электричество и тепло.
Лучшими проводниками тепла и электричества являются серебро, медь и алюминий. [36]
Теплопроводностью называется свойство металлов проводить тепло при нагревании. Чем лучше металл проводит тепло, тем быстрее и равномернее он нагревается. Теплопроводность металлов имеет большое практическое значение. Если металл обладает низкой теплопроводностью, то для полного прогрева он нуждается в длительном нагревании; при быстром же охлаждении в нем образуются трещины, что приводит к неисправимому браку изделий. Лучшими проводниками тепла являются чистые металлы — серебро, медь, алюминий. Сталь ввиду сложности химического состава обладает значительно меньшей теплопроводностью. [38]
Все металлы обладают металлическим блеском, который обусловливается способностью их сильно отражать лучи света. Большинство из них сохраняет блеск только тогда, когда они находятся в сплошной массе. В мелкораздробленном виде большинство металлов имеет черный или серый цвет, кроме магния и алюминия. Металлы хорошо проводят тепло и электричество, причем
лучшие проводники тепла являются и лучшими проводниками электрического тока. Наиболее хорошо проводят тепло и электричество серебро и медь, наименее — свинец и ртуть. [39]
При понижении температуры за точку перехода жидкий гелий внезапно начинает проводить тепло совершенно сверхъестественным для жидкости образом — сказал Ландау в одной из популярных лекций. Вы, вероятно, слыхали, что жидкости вообще очень плохо проводят тепло, в частности, плохо проводит тепло к обыкновенная вода. Не лучшей теплопроводностью обладают и другие жидкости, за исключением ртути, которая, как и все металлы, является хорошим проводником тепла. Плохо проводит тепло и гелий I, обыкновенный жидкий гелий. И вот при понижении температуры до точки перехода жидкого гелия от гелия I к гелию II, он начинает проводить тепло лучше, чем самые лучшие проводники тепла — медь и серебро, причем изменение происходит внезапно. Свойство громадной теплопередачи, конечно, сразу обратило на себя внимание и показало, что в этой непонятной жидкости скрыто еще много удивительного. [40]
При понижении температуры за точку перехода жидкий гелий внезапно начинает проводить тепло совершенно сверхъестественным для жидкости образом — сказал Ландау в одной из популярных лекций. Вы, вероятно, слыхали, что жидкости вообще очень плохо проводят тепло, в частности, плохо проводит тепло и обыкновенная вода. Не лучший теплопроводностью обладают и другие жидкости, за исключением ртути, которая, как и все металлы, является хорошим проводником тепла. Плохо проводит тепло и гелий I, обыкновенный жидкий гелий. И вот при понижении температуры до точки перехода жидкого гелия от гелия I к гелию II, он начи нает проводить тепло лучше, чем самые лучшие проводники тепла — медь и серебро, причем изменение происходит внезапно. Свойство громадной теплопередачи, конечно, сразу обратило на себя внимание и показало, что в этой непонятной жидкости скрыто еще много уди — вительного. [41]
Расположение металлов в различных местах периодической системы химических элементов показывает, что многие свойства у них должны сильно различаться. Наряду с этим имеются, однако, некоторые свойства, которые присущи всем металлам. Металлы, за исключением ртути — вещества твердые. Все металлы обладают характерным металлическим блеском, который обусловливается способностью их сильно отражать лучи света. Большинство из-них сохраняет блеск только тогда, когда они находятся в сплошной массе. В мелкораздробленном виде-болыпинство металлов имеет черный или серый цвет. Металлы хорошо проводят тепло и электричество, причем
лучшие проводники тепла являются и лучшими проводниками электрического тока. Наиболее хорошо проводят тепло и электричество серебро и медь, наименее — свинец и ртуть. [43]
С проблемой подвода и отвода тепла инженеры встречаются на каждом шагу. Работает атомная электростанция — значит, в ядерном реакторе выделяется огромное количество тепловой энергии, которое надо как можно быстрей вывести наружу для превращения в электричество. Крутится электромотор, пыхтит двигатель внутреннего сгорания, горит радиолампа, ракета врезается в атмосферу — здесь мы уже имеем дело с вредным нагревом, когда от тепла надо побыстрее избавиться. Неудивительно, что теплотехники на протяжении многих десятилетий ломают головы, пытаясь ускорить движение медлительных тепловых потоков. Чтобы пропускать по медному стержню диаметром 2 — 3 сантиметра и длиной менее полуметра всего 10 киловатт тепловой энергии, нужен огромный термический напор. Один конец стержня пришлось бы раскалить втрое горячее поверхности Солнца, фактически превратить в пар, тогда как другой должен был бы сохранять комнатную температуру. А ведь медь считается одним из
лучших проводников тепла. Что касается тепловой трубки, то при тех же размерах она пропустит такую энергию почти без сопротивления, и разность температур между ее концами практически не удастся даже измерить. Аналогичную теплопроводность могла бы иметь только медная глыба диаметром в три метра и весом 40 тонн. [44]
Пара слов о токсикологии ртути.
Некоторые в детстве играли шариками ртути, и «с ними ничего не было». Действительно, вопреки распространенному мнению металлическая ртуть при кратковременном контакте малоопасна. Причина малой токсичности металлической ртути — в ее плохой биодоступности. Нерастворимая в воде и химически инертная, почти как благородные металлы, она не может быстро попасть в организм.
Опасно вдыхание паров ртути, и это практически единственный путь поступления ее в организм. Касание ртути пальцами никакой дополнительной опасности не добавляет. Более того, дажепроглатывание ртути обычно проходит без последствий для здоровья. Ртуть химически достаточно инертна и выходит из организма естественным путем. Поэтому она является причиной не острых отравлений, а вялотекущих хронических, проявляющихся в медленном постепенном ухудшении здоровья и не всегда вовремя диагностируемых врачами. Именно этим ртуть и коварна: маленький шарик, закатившийся под плинтус, будет годами испаряться и отравлять воздух в квартире, а жильцы не будут понимать, чем и почему они болеют. Порча здоровья от контакта со ртутью в течение нескольких дней может быть необратима.
Электрическая проводимость
До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.
Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.
Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.
Электрическая проводимость измеряется в (1/Ом) или в сименсах.
Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.
Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,
Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)
Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
2.1.2. Температурная зависимость удельного сопротивления металлов
Рассмотрим движение свободных электронов в виде плоских электронных волн, длина которых λ определяется соотношением де Бройля (1.3). Такая электронная волна распространяется в строго периодическом потенциальном поле без рассеяния энергии. Это означает, что в идеальном кристалле длина свободного пробега электронов равна бесконечности, а сопротивление электрическому току равно нулю.
Причинами рассеяния электронов в реальных металлах, создающего электрическое сопротивление, являются:
• тепловые колебания узлов кристаллической решетки ( ρ т – тепловая составляющая электрического сопротивления);
Известно, что эффективное рассеяние энергии электронов происходит в том случае, если размер рассеивающих центров (дефектов) превышает 1/4 длины волны. В металлах энергия электронов
проводимости составляет 3…15 эВ, этой энергии соответствует длина электронной волны λ = 0,3…0,7нм. Поэтому любые микронеоднородности и несовершенства кристаллического строения вызывают снижение проводимости.
Читать также: Выбираем холодильник для дома
Итак, удельное сопротивление реальных металлов представляет собой сумму двух составляющих:
Относительное изменение удельного сопротивления металлов при изменении температуры характеризует температурный ко-
Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м).
Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.