В 1823г. Т. Зеебек обнаружил, что замкнутой цепи состоящей из двух разнородных проводников возникает электродвижущая сила (термоэдс), если контакты находятся при различных температурах (рис. 1.1а). Явление возникновения термоэдс наблюдается и в одном проводнике, если его концы находятся при разных температурах (рис. 1.1б). Величина термоэдс прямо пропорциональна разности температур. Величина (1.1) называется коэффициентом дифференциальной термоэдс. При наличии градиента температур в замкнутой цепи из двух проводников возникает относительная термоэдс (1.2). Коэффициент называется относительной термоэдс или коэффициент удельной термоэдс данной пары проводников.
§2. Механизмы возникновения термоэдс
Объемная (диффузионная) составляющая термоэдс возникает вследствие того, что концентрация электронов с более высокой энергией ( > Ф ) у нагретого конца будет больше, чем у холодного, а концентрация электронов с более низкой энергией ( Ф ) будет, наоборот, у нагретого конца меньше. Вследствие этого возникнет диффузионный поток электронов от горячего концу к холодному. Холодный конец получит избыточный отрицательный заряд по отношению к горячему и поэтому возникнет внутри проводника электрическое поле, направленное навстречу градиенту (рис. 1.2).
Учитывая, что перепад давления вызван градиентом температуры, преобразуем (1.4) к виду:
Учитывая (1.3), можно уточнить выражение (1.6):
Анализ выражения (1.7) показывает, что причиной возникновения объемной части термоэдс является во-первых, изменение средней энергии носителей тока () и во-вторых, изменение концентрации носителей тока ().
Особенности возникновения объемной термоэдс в металлах и полупроводниках n и p типа представлены в таблице.
Чем обусловлено возникновение объемной составляющей термоэдс
Если вам понравился сайт, то поделитесь со своими друзьями этой информацией в социальных сетях, просто нажав на кнопку вашей сети.
Эффект Зеебека состоит в том, что в электрической цепи, составленной из разных проводников ( М1 и М2 ), возникает термоэдс, если места контактов ( А, B ) поддерживаются при разных температурах. Если цепь замкнута, то в ней течет электрический ток (так называемый термоток I T ), причем изменение знака у разности температур спаев сопровождается изменением направления термотока (рис. 1).
Возникновение термоиндуцированного тока в двух спаянных проводниках при различных температурах контактов
Термоэдс контура определяется формулами:
В небольшом интервале температур (во всяком случае, для интервала порядка 0 ° С ё 100 ° С):
Термоэдс обусловлена тремя причинами:
1) температурной зависимостью уровня Ферми, что приводит к появлению контактной составляющей термоэдс;
2) диффузией носителей заряда от горячего конца к холодному, определяющей объемную часть термоэдс;
Рассмотрим первую причину. Несмотря на то, что в проводниках уровень Ферми слабо зависит от температуры (электронный газ вырожден), для понимания термоэлектрических явлений эта зависимость имеет принципиальное значение. Если оба спая термоэлемента находятся при одной и той же температуре, то контактные разности потенциалов равны и направлены в противоположные стороны, то есть компенсируют друг друга. Если же температура спаев различна, то будут неодинаковы и внутренние контактные разности потенциалов. Это ведет к нарушению электрического равновесия и возникновению контактной термоэдс ( ):
Для свободных электронов a к должно линейно меняться с температурой.
Возникновение термоЭДС в однородном материале вследствиии пространственной неоднородности температуры
Таким образом, в равновесном состоянии наличие градиента температуры вдоль образца создает постоянную разность потенциалов на его концах. Это и есть диффузионная (или объемная) составляющая термоэдс, которая определяется температурной зависимостью концентрации носителей заряда и их подвижностью. Электрическое поле возникает в этом случае в объеме металла, а не на самих контактах.
В случае положительных носителей заряда (дырки) нагретый конец зарядится отрицательно, а холодный положительно, что приведет к смене знака термоэдс. В проводниках смешанного типа от горячего конца к холодному диффундируют одновременно и электроны, и дырки, возбуждая электрические поля в противоположных направлениях. В некоторых случаях эти поля компенсируют друг друга, и никакой разности потенциалов между концами не возникает. Именно такой случай имеет место в свинце.
Необходимо отметить, что «фононное» и «диффузное» слагаемые термоэдс имеют один и тот же знак, в то время как контактная термоэдс, как правило, противоположна им по знаку.
Считая, что зависимость проводимости металлов ( s ) от энергии ( Е ) достаточно слабая, для свободных электронов получается формула:
Абсолютные значения всех термоэлектрических коэффициентов растут с уменьшением концентрации носителей. В металлах концентрации свободных электронов очень велики и не зависят от температуры; электронный газ находится в вырожденном состоянии и поэтому уровень Ферми, энергия и скорости электронов также слабо зависят от температуры. Поэтому термоэдс «классических» металлов очень мала (порядка нескольких мкВ/К). Для полупроводников a может превышать 1000 мкВ/К.
Для сравнения, в таблице приведены значения a некоторых металлов (по отношению к свинцу) для интервала температур 0 ° С ё 100 ° С (положительный знак a приписан тем металлам, к которым течет ток через нагретый спай).
Эффект Зеебека (ЭЗ, термоэлектрический эффект) определяет появление разницы потенциалов в месте соединения двух разнотипных материалов после нагрева определяемого участка. Эффект назван в честь ученого, который выявил его в 1822 году. В это время был проведен опыт нагрева контактов двух различных по типу сплава материалов, где был взят висмут и сурьма. Фиксирование полученных изменений было произведено за счет гальванометра. Удерживая участок стыка соединённых металлов, ученый обнаружил, что магнитная стрелка поменяла свое положение. Конечно, эта разница была не столь заметной, но дальнейшие опыты привели к требуемому результату.
Термоэлектрический эффект был обнаружен по причине возникновения движущейся электрической силы в рамках замкнутого контура, который состоял из разных материалов. Со временем было выявлено, что разница температур вызвана появляющимся термоэдс, следствием которого является возникновение тока в замкнутом контуре. На сегодняшний день эффект Зеебека полностью изучен и нашел свое применение во многих сфера деятельности человека. Но, самая высокая его востребованность наблюдается в производстве термопар.
Устройство
Термоэлектрический эффект заключается в производстве термопар, состоящих из 2-х разнородных сплавов, которые при контакте образуют замкнутый контур. Каждый металл имеет свой коэффициент Зеебека из-за чего между нагретым, и не нагретым проводником термопары появляется напряжение. Именно за счет этого напряжения и определяется термическая составляющая, т. к. оно прямо пропорционально разности температурных значений металлов.
Эффект Зеебека применим в большинстве термоэлектрических устройств. В большей части структур термоэлектрических генераторов включены термобатареи, набранные из полупроводниковых термоэлементов. Они могут быть соединены в параллельном или в последовательном порядке. Еще к ним относятся теплообменники нагреваемых и не нагреваемых спаев термобатарей.
В стандартной схеме цепи термоэлектрических генераторов имеются:
Полупроводниковый термоэлемент, выполненный из ветвей проводимости по типу p- и n-. У этих контактов знаки коэффициента термической движущей силы разные.
Пластины коммутации, имеющие нагреваемые и не нагреваемые спаи.
Во время включения термического элемента к нагрузке контура по нему начинает проходить постоянный ток, вызванный ЭЗ. Протекающее электричество поглощается спайками и выделяется в виде тепла. Для обеспечения высокого уровня ЭДС, подобные полупроводники должны обладать высокой электропроводностью. Чтобы получить существенный перепад температуры на промежуточном участке между спаями, достаточна их невысокая тепловая проводимость. Такими характеристиками наилучшим образом обладают материалы с высоким легированием.
Принципы действия
Главным образом эффект Зеебека действует по принципу того, что в замкнутом контуре двух разных материалов ЭДС появляется тогда, когда их контакты имеют разные температурные значения. Иными словами, значение ЭДС зависит от состава проводников и их температур. Если в наличии проводника есть температурный градиент, то по всей его длине будет наблюдаться увеличенная скорость электронов на нагретом конце и более низкая на ненагретом. По законам физики, электроны с нагретого конца направятся к противоположной стороне. В данном участке будет скапливаться отрицательный заряд. Противоположная сторона будет иметь накопление положительно заряженных частиц.
Заряды будут накапливаться до тех пор, пока потенциальное отличие не достигнет показателей, при которых электроны потекут обратно. В данных условиях потенциал начнет приобретать равновесие.
Эффекту Зеебека характерны различные свойства:
Между контактами возникает разность потенциалов. На разных контактирующих друг с другом проводках энергия Ферми также разная. При замыкании цепи потенциалы электронов будут иметь одинаковое состояние, а между контактами возникнет разность потенциалов. На контактах появится электрическое поле, локализованное в тонком приграничном слое.
В условиях замыкания цепи на проводках появится напряжение. Направление электрополя в двух контактах продвигается от большего к меньшему. При изменении термических значений напряжение также будет меняться. Но, в условиях изменения разности потенциалов изменится и электрическое поле в одном из контактов, результатом чего будет возникновение ЭДС в контуре. Если температура проводников будет равной, то объемная и контактная ЭДС приравняются к отметке 0.
Возникает фоновое увеличение. Если в твердом теле появляется градиент термического диапазона количество фонов, направляющихся к концу ненагретого проводника, увеличится. Их число будет возрастать сравнительно с теми, которые направляются к обратной стороне. Из-за столкновения с электронами фононы утянут за собой и другие. В итоге прогретый проводник накопит отрицательные заряды. А к нагретому проводнику будут прибывать положительные частицы, пока разница потенциалов не уравняется с эффектом увеличения. Разность потенциалов при низких температурах способна достигать параметров выше в сотни раз.
В проводниках с магнитными свойствами наблюдается магнонное увеличение. ЭДС возникает вследствие увеличения электронов магнонами.
Применение на практике
Устройства, созданные по принципу Зеебека, нашли широкое применение в быту и повседневной жизни людей. Например, приходя в сауну практически никто не задумывается, что температуру в ней контролируют за счет обычной термопары.
Термопара — это термоэлектрический измеритель, выполненный из двух разнородных металлов, которые между собой соединены за счет сварки. Один из ее концов помещают в самой сауне, а другой просто выводят наружу и подсоединяют к измерительному прибору. Когда воздух в сауне прогревается, разные концы термопары находятся в совершенно разной термической атмосфере и работаю при разных значениях. В таких условиях возникает градиент температур, что приводит к возникновению термического тока. Датчик к которому подключен ненагреваемый конец термопары преобразовывает термический ток в температурный показатель и автоматизирует подключение и отключение печи при наборе или спаде заданной температуры. Таким образом, осуществляется не только контроль, но и регуляция температуры в помещении сауны. Интересно знать, что если доступ к блоку управления температурой закрыт, например, в городских банях, то проводить управление температурой можно и без него. Для этого нужно можно на конец термопары намотать смоченную в холодной воде ветошь (ткань). Термопара охладится, и печь продолжит нагрев.
Применение
Примером использования эффекта Зеебека служат множество современных устройств: сенсоры напряжения, температурные датчики, измерители газового давления, термические электрогенераторы, контролеры интенсивности освещения и мн. др.
Приборы, работающие по принципу Зеебека, применяют:
В системах навигации;
В генераторах, промышленного и бытового значения;
В энергетически обеспечительных установках космического назначения;
В преобразователях солнечной энергии.
В отопительном оборудовании.
В установках служащих для перекачивания и переработки нефтяной продукции и газа;
В преобразователях тепловой энергии, вырабатываемой природными источниками.
Будущее
Эффектом Зеебека сильно заинтересованы ученые всего мира. Совсем недавно американские ученые разработали технологию, позволяющую использовать данный принцип с большой эффективностью. Основным недостатком современного оборудования является невозможность с помощью ЭЗ вырабатывать энергию в супер огромном количестве даже в условиях применения сильнолегированных металлов с высокой разностью температур.
Научные деятели предложили прибегнуть к немагнитным проводникам, которые можно устанавливать во внешнее магнитное поле с температурными пределами 2-20 К. В данном случае должен возникнуть огромный спиновый эффект Зеебека. Применение таких термических измерителей даст возможность значительно увеличить показания используемых приборов, расширить их функциональные возможности и сферы применения.
Самым простым примером является их применение в роли устройств для отвода тепла в системах кондиционирования и охлаждения. За счет того, что движущиеся частицы в данном случае будут отсутствовать, а дешевые материалы для их функционирования будут работоспособными много лет — это чрезвычайно выгодно. Термопары нового поколения даже смогут выдавать ток для подпитки приборов, которые сами его выделяют. Их можно применять для охлаждения компьютерного процессора. А спиновой эффект можно будет использовать для производства электронных устройств нового поколения.
В целом ряде термоэлектрических устройств давно используется так называемый эффект Зеебека — возникновении электрического напряжения в цепи из последовательно соединенных разнородных металлов, контакты между которыми находятся при разных температурах. А недавно японские ученые экспериментально показали существование спинового эффекта Зеебека: оказывается, металлический магнит, помещенный в температурный градиент, является аналогом термопары.
В современной физике открытие новых эффектов — далеко не частое явление и, по сути, большая часть из них расширяет диапазон распространения классических эффектов на объекты наномира. Так случилось и с недавно открытым спиновым эффектом Зеебека, ставшим логическим продолжением классического эффекта Зеебека, открытого еще в 1821 году. Новичок, по заверениям ученых, способен сделать переворот в передовой области современной науки — спинтронике.
Классический эффект Зеебека заключается в возникновении электрического напряжения в цепи, состоящей из последовательно соединенных разнородных металлов, контакты между которыми находятся при разных температурах. Благодаря этому эффекту человечество обрело ключи к большому классу явлений под общим названием «термоэлектричество».
Сегодня в целом ряде устройств, таких как термоэлектрогенераторы, сенсоры напряжения, температуры, давления газа, интенсивности света, задействован эффект Зеебека. Термоэлектрические устройства широко используются в нашей повседневной жизни. Почти все хотя бы раз в жизни были в сауне, но мало кто знает, что температурный контроль в ней осуществляется так называемой термопарой.
Такой термоэлектрический термометр состоит из двух кусочков разнородных металлов, соединенных сваркой (рис. 1а). Один конец термопары помещается в измеряемую среду (в нашем случае в сауну), а свободные концы выведены наружу и подключены к измерительному устройству. При включении печи на нагрев разные концы термопары будут находиться при разных температурах (возникает температурный градиент), что приведет к возникновению термотока или термоэлектродвижущей силы (термоЭДС).
Измерительное устройство преобразует термоток в показания термометра либо работает как датчик температуры на включение и отключение печи в сауне при достижении определенной температуры. Кстати, если, находясь в сауне, вы не имеете возможности прибавить температуру легальным путем (блок управления печью закрыт на замок администратором), то можно воспользоваться знанием физики. Для этого на «горячий» конец термопары достаточно намотать смоченный в воде носовой платок или полотенце. Следует отметить, что главное достоинство термопар по сравнению с жидкостными термометрами — широкий диапазон рабочих температур: от 4 до 2800 К в зависимости от используемых материалов.
Выделяют три основных причины возникновения термоЭДС. Во-первых, это температурная зависимость уровня Ферми контактирующих проводников. В случае создания температурного градиента внутренние контактные разности потенциалов металлов будут различными, что и приводит к контактной составляющей термотока. Во-вторых, диффузия носителей заряда от горячего конца к холодному. В металлах тепло переносят электроны, которые диффундируют от горячего конца к холодному, накапливаясь на нём. В результате появляется электрическое поле, направленное против температурного градиента и препятствующее дальнейшему разделению зарядов. В-третьих, увлечение электронов фононами, которые движутся в сторону, противоположную температурному градиенту и как бы «подталкивают» электроны к холодному концу.
Все эти причины учтены в так называемом коэффициенте Зеебека, который различается для разнородных проводников (так как зависит от плотности электронов проводимости и скорости их рассеяния) и определяется как отношение сгенерированного электрического напряжения к разности температур на концах проводника. Более подробно о классическом эффекте Зеебека можно прочитать здесь или здесь.
А недавно японские ученые экспериментально показали существование спинового эффекта Зеебека. Их работа была опубликована в журнале Nature. Всё началось с теоретических рассуждений. Так как в металлическом магните электроны проводимости в состояниях «спин вверх» и «спин вниз» имеют разную плотность и скорости рассеивания, то авторы публикации логично предположили, что спиновые состояния имеют и разные коэффициенты Зеебека. Другими словами, авторы предложили рассматривать магнит как два проводника с различными коэффициентами Зеебека (рис. 1b).
Итак, магнит (в данном эксперименте — 20-нанометровая пленка пермаллоя Ni81Fe19), помещенный в температурный градиент, содержит как бы два канала для электронов в разных спиновых состояниях. По сути, металлический магнит, помещенный в температурный градиент, является аналогом термопары! Так как по спиновым каналам будет протекать ток разной величины, соответственно μ↑ и μ↓, то на выходе из магнита мы можем извлекать чистый спиновый ток, равный μ↑–μ↓. Как показали авторы статьи, такой термически индуцированный спиновый ток способен распространяться на сравнительно большие расстояния от концов магнита.
Спиновый эффект Зеебека — принципиально новая основа для создания генераторов спиновых токов, которые являются ключевыми элементами в устройствах термоспинтроники — электроники нового поколения. Японским ученым впервые в мире удалось получить чистый спиновый ток — поток электронных спинов (точнее, электронов с одинаковым спином) без приложения электрического тока, — распространяющийся на большие расстояния (несколько миллиметров). Это поразительный результат, так как все предыдущие исследования показали, что спиновые токи затухают на дистанциях, больших чем длина спиновой диффузии (расстояние, которое проходит спин без рассеяния); для сравнения, спиновая диффузия в меди составляет около 500 нм, в платине — 5 нм. Исключение составляет лишь работа Аппельбаума, которому удалось передать спин на расстояние 350 мкм.
Авторы полагают, что спиновый эффект Зеебека серьезно изменит исследования в области спиновых токов и приведет к скорому продвижению технологий по созданию спинтронных устройств нового поколения.
Источник: K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh. Observation of the spin Seebeck effect // Nature. 2008. V. 455. P. 778-781; doi:10.1038/nature07321.
Термоэлектрические эффекты Зеебека, Пельтье и Томсона
Работа термоэлектрических холодильных машин и генераторов базируется на термоэлектрических явлениях. К их числу относятся эффекты Зеебека, Пельтье и Томсона. Эти эффекты связаны, как с превращением тепловой энергии в электрическую, так и с превращением энергии электрического тока в холод.
Термоэлектрические свойства проводников обусловлены связями между тепловыми и электрическими потоками:
Эффект Зеебека, Пельтье и Томпсона относятся к числу кинетических явлений. Они связаны с процессами перемещения заряда и энергии, поэтому их часто называют явлениями переноса. Направленные потоки заряда и энергии в кристалле порождаются и поддерживаются внешними силами: электрическим полем, градиентом температуры.
Эффект Зеебека состоит в том, что если в разомкнутой электрической цепи, состоящей из нескольких разнородных проводников, на одном из контактов поддерживать температуру Т1 (горячий спай), а на другом температуру Т2 (холодный спай), то при условии Т1 не равна Т2 на концах цепи возникает термоэлектродвижущая сила Е. При замыкании контактов в цепи появляется электрический ток.
При наличии в проводнике градиента температуры в нем возникает термодиффузионный поток носителей заряда от горячего конца к холодному. Если электрическая цепь разомкнута, то носители накапливаются на холодном конце, заряжая его отрицательно, если это электроны, и положительно в случае дырочной проводимости. При этом на горячем конце остается нескомпенсированный заряд ионов.
Возникающее электрическое поле тормозит носители, движущиеся к холодному концу, и ускоряет носители, движущиеся к горячему. Формируемая градиентом температуры неравновесная функция распределения смещается под действием электрического поля несколько деформируется. Результирующее распределение таково, что ток равен нулю. Напряженность электрического поля пропорциональна вызвавшему его градиенту температуры.
Величина коэффициента пропорциональности и его знак зависят от свойств материала. Обнаружить электрическое поле Зеебека и измерить термоэлектродвижущую силу можно лишь в цепи, составленной из разнородных материалов. Контактные разности потенциалов соответствуют разнице химические потенциалов материалов, приведённых в контакт.
Эффект Пельтье заключается в том, что при пропускании постоянного тока через термоэлемент, состоящий из двух проводников или полупроводников, в месте контакта выделяется или поглощается некоторое количество теплоты (в зависимости от направления тока).
Когда электроны переходят из материала p-типа в материал n-типа через электрический контакт, им приходится преодолевать энергетический барьер и забирать для этого энергию у кристаллической решетки (холодный спай). Наоборот, при переходе из материала n-типа в материал p-типа электроны отдают энергию решетке (горячий спай).
Эффект Томсона состоит в том, что при протекании электрического тока через проводник или полупроводник, в котором создан градиент температуры, в дополнение к теплоте Джоуля выделяется или поглощается (в зависимости от направления тока) некоторое количество теплоты.
Физическая причина данного эффекта связана с тем, что энергия свободных электронов зависит от температуры. Тогда на горячем спае электроны приобретают более высокую энергию, чем на холодном. Плотность свободных электронов также растет при повышении температуры, вследствие чего возникает поток электронов от горячего конца к холодному.
На горячем конце накапливается положительный заряд, на холодном – отрицательный. Перераспределение зарядов препятствует потоку электронов и при определенной разности потенциалов совсем его останавливает.
Аналогично протекают вышеописанные явления и в веществах с дырочной проводимостью, с той лишь разницей, что на горячем конце накапливается отрицательный заряд, а на холодном – положительно заряженные дырки. Поэтому в веществах со смешанной проводимостью эффект Томсона оказывается несущественным.
Практическое применение эффекта Томсона не нашел, но его можно использовать для определения типа примесной проводимости полупроводников.
Практическое использование эффектов Зеебека и Пельтье
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: