Чем обусловлена систематическая погрешность
ПОГРЕШНОСТИ ИЗМЕРЕНИЙ
Вследствие погрешностей, присущих средству измерений, выбранному методу и методике измерений, отличия внешних условий, в которых выполняется измерение, от установленных, и других причин результат практически каждого измерения отягощен погрешностью. Эта погрешность вычисляется или оценивается и приписывается полученному результату.
Погрешность результата измерений (кратко — погрешность измерений) — отклонение результата измерения от истинного значения измеряемой величины.
Истинное значение величины вследствие наличия погрешностей остается неизвестным. Его применяют при решении теоретических задач метрологии. На практике пользуются действительным значением величины, которое заменяет истинное значение.
Погрешность измерения (Δх) находят по формуле:
где хизм. — значение величины, полученное на основании измерений; хдейств. — значение величины, принятое за действительное.
За действительное значение при однократных измерениях нередко принимают значение, полученное с помощью образцового средства измерений, при многократных измерениях — среднее арифметическое из значений отдельных измерений, входящих в данный ряд.
Погрешности измерения могут быть классифицированы по следующим признакам:
— по характеру проявления — систематические и случайные;
— по способу выражения — абсолютные и относительные;
— по условиям изменения измеряемой величины — статические и динамические;
— по способу обработки ряда измерений — средние арифметические и средние квадратические;
— по полноте охвата измерительной задачи — частные и полные;
— по отношению к единице физической величины — погрешности воспроизведения единицы, хранения единицы и передачи размера единицы.
Систематическая погрешность измерения (кратко — систематическая погрешность) — составляющая погрешности результата измерения, остающаяся постоянной для данного ряда измерений или же закономерно изменяющаяся при повторных измерениях одной и той же физической величины.
По характеру проявления систематические погрешности подразделяются на постоянные, прогрессивные и периодические. Постоянные систематические погрешности (кратко — постоянные погрешности) — погрешности, длительное время сохраняющие свое значение (например, в течение всей серии измерений). Это наиболее часто встречающийся вид погрешности.
Прогрессивные систематические погрешности (кратко — прогрессивные погрешности) — непрерывно возрастающие или убывающие погрешности (например, погрешности от износа измерительных наконечников, контактирующих в процессе шлифования с деталью при контроле ее прибором активного контроля).
Периодическая систематическая погрешность (кратко — периодическая погрешность) — погрешность, значение которой является функцией времени или функцией перемещения указателя измерительного прибора (например, наличие эксцентриситета в угломерных приборах с круговой шкалой вызывает систематическую погрешность, изменяющуюся по периодическому закону).
Исходя из причин появления систематических погрешностей, различают инструментальные погрешности, погрешности метода, субъективные погрешности и погрешности вследствие отклонения внешних условий измерения от установленных методиками.
Инструментальная погрешность измерения (кратко — инструментальная погрешность) является следствием ряда причин: износ деталей прибора, излишнее трение в механизме прибора, неточное нанесение штрихов на шкалу, несоответствие действительного и номинального значений меры и др.
Погрешность метода измерений (кратко — погрешность метода) может возникнуть из-за несовершенства метода измерений или допущенных его упрощений, установленных методикой измерений. Например, такая погрешность может быть обусловлена недостаточным быстродействием применяемых средств измерений при измерении параметров быстропротекающих процессов или неучтенными примесями при определении плотности вещества по результатам измерения его массы и объема.
Субъективная погрешность измерения (кратко — субъективная погрешность) обусловлена индивидуальными погрешностями оператора. Иногда эту погрешность называют личной разностью. Она вызывается, например, запаздыванием или опережением принятия оператором сигнала.
Погрешность вследствие отклонения (в одну сторону) внешних условий измерения от установленных методикой измерения приводит к возникновению систематической составляющей погрешности измерения.
Систематические погрешности искажают результат измерения, поэтому они подлежат исключению, насколько это возможно, путем введения поправок или юстировкой прибора с доведением систематических погрешностей до допустимого минимума.
Неисключенная систематическая погрешность (кратко — неисключенная погрешность) — это погрешность результата измерений, обусловленная погрешностью вычисления и введения поправки на действие систематической погрешности, или небольшой систематической погрешностью, поправка на действие которой не введена вследствие малости.
Иногда этот вид погрешности называют неисключенными остатками систематической погрешности (кратко — неисключенные остатки). Например, при измерении длины штрихового метра в длинах волн эталонного излучения выявлено несколько неисключенных систематических погрешностей (i): из-за неточного измерения температуры — 1; из-за неточного определения показателя преломления воздуха — 2, из-за неточного значения длины волны — 3.
Обычно учитывают сумму неисключенных систематических погрешностей (устанавливают их границы). При числе слагаемых N ≤ 3 границы неисключенных систематических погрешностей вычисляют по формуле
(1.4)
При числе слагаемых N ≥ 4 для вычислений используют формулу
(1.5)
где k — коэффициент зависимости неисключенных систематических погрешностей от выбранной доверительной вероятности Р при их равномерном распределении. При Р = 0,99, k = 1,4, при Р = 0,95, k = 1,1.
Случайная погрешность измерения (кратко — случайная погрешность) — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии измерений одного и того же размера физической величины. Причины случайных погрешностей: погрешности округления при отсчете показаний, вариация показаний, изменение условий измерений случайного характера и др.
Случайные погрешности вызывают рассеяние результатов измерений в серии.
В основе теории погрешностей лежат два положения, подтверждаемые практикой:
1. При большом числе измерений случайные погрешности одинакового числового значения, но разного знака, встречаются одинаково часто;
2. Большие (по абсолютному значению) погрешности встречаются реже, чем малые.
Из первого положения следует важный для практики вывод: при увеличении числа измерений случайная погрешность результата, полученного из серии измерений, уменьшается, так как сумма погрешностей отдельных измерений данной серии стремится к нулю, т. е.
(1.6)
Несмотря на то, что с увеличением числа измерений сумма случайных погрешностей стремится к нулю (в данном примере она случайно получилась равной нулю), обязательно производится оценка случайной погрешности результата измерений. В теории случайных величин характеристикой рассеяния значений случайной величины служит дисперсия о2. «|/о2 = а называют средним квадратическим отклонением генеральной совокупности или стандартным отклонением.
Оно более удобно, чем дисперсия, так как его размерность совпадает с размерностью измеряемой величины (например, значение величины получено в вольтах, среднее квадратическое отклонение тоже будет в вольтах). Так как в практике измерений имеют дело с термином «погрешность», для характеристики ряда измерений следует применять производный от него термин «средняя квадратическая погрешность». Характеристикой ряда измерений может служить средняя арифметическая погрешность или размах результатов измерений.
Размах результатов измерений (кратко — размах) — алгебраическая разность наибольшего и наименьшего результатов отдельных измерений, образующих ряд (или выборку) из n измерений:
где Rn — размах; Xmax и Хmin — наибольшее и наименьшее значения величины в данном ряду измерений.
Например, из пяти измерений диаметра d отверстия значения R5 = 25,56 мм и R1 = 25,51 мм оказались максимальным и минимальным его значением. В этом случае Rn = d5 — d1= 25,56 мм — 25,51 мм = 0,05 мм. Это означает, что остальные погрешности данного ряда менее 0,05 мм.
Средняя арифметическая погрешность отдельного измерения в серии (кратко — средняя арифметическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из n равноточных независимых измерений, вычисляется по формуле
(1.8)
Истинное значение средней арифметической погрешности р определяется из соотношения
При числе измерений n > 30 между средней арифметической (r) и средней квадратической (s) погрешностями существуют соотношения
s = 1,25 r; r и= 0,80 s. (1.10)
Преимущество средней арифметической погрешности — простота ее вычисления. Но все же чаще определяют среднюю квадратическую погрешность.
Средняя квадратическая погрешность отдельного измерения в серии (кратко — средняя квадратическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из п равноточных независимых измерений, вычисляемая по формуле
(1.11)
Средняя квадратическая погрешность для генеральной выборки о, являющаяся статистическим пределом S, может быть вычислена при /і-мх > по формуле:
В действительности число измерений всегда ограничено, поэтому вычисляется не σ, а ее приближенное значение (или оценка), которым является s. Чем больше п, тем s ближе к своему пределу σ.
При нормальном законе распределения вероятность того, что погрешность отдельного измерения в серии не превзойдет вычисленную среднюю квадратическую погрешность, невелика: 0,68. Следовательно, в 32 случаях из 100 или 3 случаях из 10 действительная погрешность может быть больше вычисленной.
Рисунок 1.2 Уменьшение значения случайной погрешности результата многократного измерения при увеличении числа измерений в серии
В серии измерений существует зависимость между средней квадратической погрешностью отдельного измерения s и средней квадратической погрешностью арифметического среднего Sx:
(1.13)
которую нередко называют «правилом У n». Из этого правила следует, что погрешность измерений вследствие действия случайных причин может быть уменьшена в уn раз, если выполнять n измерений одного размера какой-либо величины, а за окончательный результат принимать среднее арифметическое значение (рис. 1.2).
Выполнение не менее 5 измерений в серии дает возможность уменьшить влияние случайных погрешностей более чем в 2 раза. При 10 измерениях влияние случайной погрешности уменьшается в 3 раза. Дальнейшее увеличение числа измерений не всегда экономически целесообразно и, как правило, осуществляется лишь при ответственных измерениях, требующих высокой точности.
Средняя квадратическая погрешность отдельного измерения из ряда однородных двойных измерений Sα вычисляется по формуле
(1.14)
где x’i и х»i — і-ые результаты измерений одного размера величины при прямом и обратном направлениях одним средством измерений.
При неравноточных измерениях среднюю квадратическую погрешность арифметического среднего в серии определяют по формуле
(1.15)
где pi — вес і-го измерения в серии неравноточных измерений.
Среднюю квадратическую погрешность результата косвенных измерений величины Y, являющейся функцией Y = F (X1, X2, Xn), вычисляют по формуле
(1.16)
где S1, S2, Sn — средние квадратические погрешности результатов измерений величин X1, X2, Xn.
Если для большей надежности получения удовлетворительного результата проводят несколько серий измерений, среднюю квадратическую погрешность отдельного измерения из m серий (Sm) находят по формуле
(1.17)
Где n — число измерений в серии; N — общее число измерений во всех сериях; m — число серий.
При ограниченном числе измерений часто необходимо знать погрешность средней квадратической погрешности. Для определения погрешности S, вычисляемой по формуле (2.7), и погрешности Sm, вычисляемой по формуле (2.12), можно воспользоваться следующими выражениями
(1.18)
(1.19)
где S и Sm — средние квадратические погрешности соответственно S и Sm.
Например, при обработке результатов ряда измерений длины х получены
= 86 мм 2 при n = 10,
= 3,1 мм
= 0,7 мм или S = ±0,7 мм
Значение S = ±0,7 мм означает, что из-за погрешности вычисления s находится в пределах от 2,4 до 3,8 мм, следовательно, десятые доли миллиметра здесь ненадежны. В рассмотренном случае надо записать: S = ±3 мм.
Чтобы иметь большую уверенность в оценке погрешности результата измерений, вычисляют доверительную погрешность или доверительные границы погрешности. При нормальном законе распределения доверительные границы погрешности вычисляют как ±t-s или ±t-sx, где s и sx — средние квадратические погрешности соответственно отдельного измерения в серии и среднего арифметического; t — число, зависящее от доверительной вероятности Р и числа измерений n.
Важным понятием является надежность результата измерений (α), т.е. вероятность того, что искомое значение измеряемой величины попадет в данный доверительный интервал.
Если 2a = ±3s, то надежность результата a = 0,68, т. е. в 32 случаях из 100 следует ожидать выхода размера детали за допуск 2а. При оценивании качества детали по допуску 2a = ±3s надежность результата составит 0,997. В этом случае можно ожидать выхода за установленный допуск только трех деталей из 1000. Однако увеличение надежности возможно лишь при уменьшении погрешности длины детали. Так, для повышения надежности с a = 0,68 до a = 0,997 погрешность длины детали необходимо уменьшить в три раза.
В последнее время получил широкое распространение термин «достоверность измерений». В некоторых случаях он необоснованно применяется вместо термина «точность измерений». Например, в некоторых источниках можно встретить выражение «установление единства и достоверности измерений в стране». Тогда как правильнее сказать «установление единства и требуемой точности измерений». Достоверность нами рассматривается как качественная характеристика, отражающая близость к нулю случайных погрешностей. Количественно она может быть определена через недостоверность измерений.
Недостоверность измерений (кратко — недостоверность)— оценка несовпадения результатов в серии измерений вследствие влияния суммарного воздействия случайных погрешностей (определяемых статистическими и нестатистическими методами), характеризуемая областью значений, в которой находится истинное значение измеряемой величины.
В соответствии с рекомендациями Международного бюро мер и весов недостоверность выражается в виде суммарной средней квадратической погрешности измерений — Su включающей среднюю квадратическую погрешность S (определяемую статистическими методами) и среднюю квадратическую погрешность u (определяемую нестатистическими методами), т.е.
(1.20)
Например, при нормальном законе распределения вероятность появления случайной погрешности, равной ±3s, составляет 0,997, а разность 1-Р = 0,003 незначительна. Поэтому во многих случаях доверительную погрешность ±3s, принимают за предельную, т.е. пр = ±3s. В случае необходимости пр может иметь и другие соотношения с s при достаточно большом Р (2s, 2,5s, 4s и т.д.).
В связи с тем, в стандартах ГСИ вместо термина «средняя квадратическая погрешность» применен термин «среднее квадратическое откланение», в дальнейших рассуждениях мы будим придерживаться именно этого термина.
Абсолютная погрешность измерения (кратко — абсолютная погрешность) — погрешность измерения, выраженная в единицах измеряемой величины. Так, погрешность Х измерения длины детали Х, выраженная в микрометрах, представляет собой абсолютную погрешность.
Не следует путать термины «абсолютная погрешность» и «абсолютное значение погрешности», под которым понимают значение погрешности без учета знака. Так, если абсолютная погрешность измерения равна ±2мкВ, то абсолютное значение погрешности будет 0,2 мкВ.
Относительная погрешность измерения (кратко — относительная погрешность) — погрешность измерения, выраженная в долях значения измеряемой величины или в процентах. Относительную погрешность δ находят из отношений:
(1.21)
Например, имеется действительное значение длины детали х = 10,00 мм и абсолютное значение погрешности х = 0,01мм. Относительная погрешность составит
Статическая погрешность — погрешность результата измерения, обусловленная условиями статического измерения.
Динамическая погрешность — погрешность результата измерения, обусловленная условиями динамического измерения.
Погрешность воспроизведения единицы — погрешность результата измерений, выполняемых при воспроизведении единицы физической величины. Так, погрешность воспроизведения единицы при помощи государственного эталона указывают в виде ее составляющих: неисключенной систематической погрешности, характеризуемой ее границей ; случайной погрешностью, характеризуемой средним квадратическим отклонением s и нестабильностью за год ν.
Погрешность передачи размера единицы — погрешность результата измерений, выполняемых при передаче размера единицы. В погрешность передачи размера единицы входят неисключенные систематические погрешности и случайные погрешности метода и средств передачи размера единицы (например, компаратора).
Систематические погрешности
Классы точности средств измерений. Классификация погрешностей средств измерений
Погрешность средства измерений — разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.
На рисунке 3.1 показана классификация погрешностей средств измерений, в которой они условно разбиты на пять групп в зависимости от природы их происхождения.
Рисунок 3.1 – Классификация погрешностей средств измерений
Систематическая погрешность средства измерений – составляющая погрешности измерения, которая при повторении равноточных измерений остаётся постоянной или закономерно изменяется. Эту погрешность можно исключить или вносить соответствующие поправки.
Систематическая погрешность конкретного средства измерений, как правило, будет отличаться от систематической погрешности другого экземпляра средства измерений этого же типа, вследствие чего для группы однотипных средств измерений систематическая погрешность может иногда рассматриваться как случайная погрешность. Причины возникновения систематических погрешностей и их классификация будут рассмотрены отдельно.
Случайная погрешность средства измерений (случайная погрешность) – составляющая погрешности измерения, которая изменяется случайным образом. случайная погрешность может быть обнаружена при повторных измерениях одной и той же величины, когда получаются неодинаковые результаты. Её нельзя исключить, но их влияние на результата измерения может быть теоретически учтено методами теории вероятности и математической статистики.
Промахи связаны с резким нарушением условий испытаний при отдельном наблюдении: толчки, неисправности измерительной аппаратуры, неправильные действия наблюдателя. Результаты измерений, содержащие промахи, должны быть отброшены как недостоверные.
(3.2)
. (3.2*)
стоянному во всем диапазоне измерений или в части диапазона
, (3.3)
где — нормирующее значение.Часто за нормирующее значение принимают верхний предел измерений.
Аддитивная погрешность (по лат. – получаемая путем сложения) – погрешность, не зависящая от измеряемой величины. По закономерности проявления аддитивные погрешности могут быть случайными или систематическими.
Случайная аддитивная погрешность, например, вызываемая трением в опорах измерительного механизма, контактными сопротивлениями, дрейфом нуля и др., при изменении измеряемой величины принимать произвольное, но не зависящее от измеряемой величины значения. Её предельные значения образуют на характеристике полосу постоянной величины (рисунок 3.2,а). Точно такая же картина будет, если погрешность представляется как приведенная, поскольку знаменатель в выражении (3.3) не изменяется на протяжении всей шкалы независимо от значения измеряемой величины.
Примером систематической аддитивной погрешности является смещение нуля характеристики аналогового средства измерения (рисунок 3.2,б).
D 0 пр – предельное значение случайной погрешности
Рисунок 3.2 – Смещение характеристик аналогового измерительного прибора под влиянием аддитивных систематической (а) и случайной (б) погрешностей
Пример — Источники мультипликативной погрешности – действие влияющих величин на параметры элементов и узлов СИ, например, изменение собственного сопротивления амперметра и встроенного в него шунта при изменении температуры окружающей среды.
В этом случае результат измерения определяется по формуле:
Поскольку при изменении температуры окружающей среды сопротивления и
изменяются неодинаково, т.к. сделаны из разных материалов, погрешность измерения будет изменяться пропорционально соотношению этих сопротивлений.
Погрешность нелинейности имеет нелинейную зависимость от измеряемой величины. Чаще всего возникает как систематическая погрешность, связанная с линеаризацией номинальной статической характеристики.
Вариация имеет нелинейную зависимость от измеряемой величины, появляется вследствие гистерезисных явлений, вариации, проявляющейся при подходе к измеряемой точке со стороны меньших и больших значений; проявляется как систематическая погрешность (рисунок 3.3).
Учёт всех нормируемых метрологических характеристик средств измерений является сложной и трудоёмкой процедурой. На практике такая точность не нужна. Поэтому для средств измерений, используемых в повседневной практике, принято деление на классы точности.
Класс точности дает возможность судить о том, в каких пределах находится погрешность средства измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Это важно при выборе средств измерений в зависимости от заданной точности измерений. Класс точности средств измерений конкретного типа устанавливают в стандартах технических требований (условий) или в других нормативных документах.
Требования к нормируемым метрологическим характеристикам устанавливаются в стандартах на средства измерений конкретного типа.
Например, для электроизмерительных приборов нормируют:
— пределы допускаемых погрешностей и соответствующие рабочие области влияющих величин;
— пределы допускаемых дополнительных погрешностей и соответствующие рабочие области влияющих величин;
— пределы допускаемой вариации показаний;
— невозвращение указателей к нулевой отметке.
При превышении установленного предела погрешности средство измерений признается негодным для применения (в данном классе точности).
Обычно устанавливают пределы допускаемой погрешности, то есть границы зоны, за которую не должна выходить погрешность.
Пределы допускаемой абсолютной основной погрешности устанавливают по формуле
(3.4)
, (3.4 * )
где и
— положительные числа, не зависящие от
.
Пределы допускаемой приведенной погрешности
, (3.5)
где — положительное число, выбираемое из ряда
(1; 1,5; 2,0; 2,5; 4,0; 5,0; 6,0), при
. (3.6)
Пределы допускаемой относительной основной погрешности определяют из уравнения
, (3.7)
если установлено по формуле (3.4).
Если же D определено по формуле (3.4 * ), т.е. имеется мультипликативная составляющая погрешности, пределы допускаемой относительной основной погрешности определяют по формуле
, (3.8)
где — больший по модулю из пределов измерений;
. Значения чисел
и
должны быть округлены до чисел из ряда (3.6).
Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств. Классы точности присваиваются средствам измерений с учётом результатов государственных приёмочных испытаний.
Общие положения о делении средств измерений на классы точности и способы нормирования метрологических характеристик регламентированы ГОСТ 8.401—80. Однако этот стандарт не устанавливает классы точности средств измерения, для которых предусмотрены нормы отдельно для систематической и случайной составляющих погрешности, а также если необходимо учитывать динамические характеристики.
Если класс точности прибора установлен по пределу допускаемой относительной основной погрешности, т.е по значению погрешности чувствительности [см. формулу (3.7)] и форма полосы погрешности принята чисто мультипликативной, обозначаемое на шкале значение класса точности обводится кружком.
Если же полоса погрешности принята аддитивной и прибор нормируется по пределу допускаемой приведенной основной погрешности [см. формулу (3.5)], т.е. по значению погрешности нуля (таких приборов большинство), то класс точности указывается на шкале без каких-либо подчеркиваний.
Если шкала прибора неравномерная (например, у омметров), предел допускаемой основной приведенной погрешности выражается формулой (3.5), а нормирующее значение принято равным длине шкалы или ее части, класс точности обозначается на шкале одним числом, помещенным между двумя линиями, расположенными под углом.
Если средство измерений обладает как аддитивной, так и мультипликативной полосой погрешности, а пределы допускаемой относительной погрешности в процентах устанавливаются формулой (3.8), классы точности обозначают числами с и d (в процентах), разделяя их косой чертой.
Пример – Если установлено, что для средства измерения , где с = 0,02; d = 0,01, то обозначение в документации будет «класс точности 0,02/0,01», а на приборе 0,02/0,01.
Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей по формуле (3.4), классы точности обозначают прописными буквами латинского алфавита или римскими цифрами. Чем дальше буква от начала алфавита, тем больше погрешность. Расшифровка соответствия букв значению абсолютной погрешности осуществляется в технической документации на средство измерения.
Для всех рассмотренных случаев вместе с условным обозначением класса точности на шкале, щитке или корпусе средств измерений наносится номер стандарта или технических условий, устанавливающих технические требования на эти средства измерений. Таким образом, обозначение класса точности средства измерений дает достаточно полную информацию для вычисления приближенной оценки погрешностей результатов измерений.
Примеры обозначения классов точности на шкалах приборов приведены на рисунке 3.4.
а – вольтметр класса точности 0,5 с равномерной шкалой;