Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

Концепция пространства и времени

Николай Яковлевич Кириленко – советский и российский ученый в области механики, экологии, педагогики, психологии, академик Российской академии естественных наук, профессор, заслуженный изобретатель Российской Федерации, заслуженный деятель науки Московской области, лауреат Национальной экологической премии «Экомир», Международной экологической премии «EcoWorld», Международной премии им. М. Нострадамуса, специальный диплом им. Н.И. Вавилова Международной экологической премии «EcoWorld», почетный ученый Европы, почетный изобретатель Европы, выдающийся натуропат Европы.

КОНЦЕПЦИЯ ПРОСТРАНСТВА И ВРЕМЕНИ

Пространство – место, в котором определяется положение физических тел, происходит их движение.

Время – форма протекания физических процессов, условие возможности изменения.

Пространство и время – основные формы существования материи, они неотделимы от материи. В этом проявляется их универсальность и всеобщность. Материя, движение, пространство и время неотделимы друг от друга; движение является сущностью пространства и времени.

Основные свойства пространства, времени.

Опыт говорит о том, что физическое пространство трёхмерно, однородно и изотропно, а время – одномерно и однородно.

Одномерность времени проявляется в том, что для указания момента наступления какого-либо события или длительности какого-либо процесса достаточно одного числа. Однородность времени проявляется в неизменности физических законов, опыт, поставленный в одинаковых физических условиях в разные моменты времени, даёт одинаковые результаты.

Трёхмерность физического пространства проявляется в том, что для указания места, где происходит какое-либо событие, достаточно трёх чисел – трёх пространственных координат. Однородность физического пространства проявляется в независимости физических законов от положения: одни и те же законы действуют во всех уголках Вселенной. Опыт, поставленный в одинаковых физических условиях в разных местах, даёт одинаковые результаты. Изотропность физического пространства проявляется в независимости физических законов от ориентации физической системы в пространстве.

Для описания явлений природы вводится физическое понятие –событие, которое характеризуется указанием четырёх чисел: трёх пространственных и одной временной координат. Любой физический процесс или явление можно рассматривать как некую последовательность или совокупность отдельных событий.

Однородность времени, однородность и изотропность пространства отражают определённую симметрию физического мира. Однородность пространства связана с симметрией по отношению к преобразованию сдвига, т.е. параллельному переносу. Изотропность пространства связана с симметрией по отношению к поворотам. Однородность времени связана с симметрией по отношению к сдвигу во времени. Существует также симметрия по отношению к отражению во времени, с ней связана обратимость физических явлений.

Соображения симметрии играют большую роль при объяснении свойств физического мира. В 1918 году немецкой учёной Эмми Нётер удалось доказать фундаментальную теорему физики, которую в упрощённом виде можно сформулировать так: «Каждому свойству симметрии пространства и времени соответствует свой закон сохранения». В частности, как следует из теоремы Нётер, однородности времени должен соответствовать закон сохранения энергии, однородности пространства – соответствовать закон сохранения импульса, а изотропии пространства соответствует закон сохранения момента импульса.

Следует отметить, что впервые на связь законов сохранения со свойствами симметрии пространства и времени указал ещё Гамель в 1904 году, но его работа в то время осталась практически неизвестной.

В основе классической физики лежит абсолютность пространства и времени (неизменность в любых системах отсчета). Эйнштейн в специальной теории относительности вводит понятие относительности пространства и времени (зависимости характера времени и пространства от скорости движения систем и тел).

Современная физика считает, что пространство трёхмерно, четвёртым измерением является время. Эти четыре измерения образуют так называемый четырёхмерный континуум, единую систему – «пространство – время».

Исследователям приходится сталкиваться с явлениями, которые не удаётся объяснить с позиций общепринятой концепции четырёхмерного континуума «пространство – время».

Одним из возможных путей коренного пересмотра мировоззренческих позиций является признание того, что хорошо известный четырёхмерный континуум «пространство – время» не исчерпывает всего многообразия отражения и форм существования материи, а является только частным отображением более общего случая.

Идея многомерности пространства получила своё воплощение ещё в конце XVIII и начале XIX веков в работах Мебиуса, Якоби, Кели, Плюккера и других. В наиболее обобщенном виде многомерная геометрия нашла отражение в работах немецкого математика Римана (1854 г.), а также в геометрии постоянной кривизны русского ученого Лобачевского. Наконец, в 1908 году немецкий математик – Миньковский применил её в специальной теории относительности.

Широкое распространение гипотеза о многомерности пространства получила в 20-х годах ХХ столетия. К этому времени относятся многие философские работы К.Э. Циолковского, в которых он излагал свою концепцию многомерности пространства. Учёными допускается также возможность существования и нескольких временных координат.

Сторонники взглядов, прямо противоположных концепций идеальности времени (физик А.И. Вейник, астроном Н.А. Козырев), утверждают, что время не просто форма проявления каких-то явлений, а самостоятельный процесс, имеющий определённые энергетические характеристики, некая субстанция, способная совершать определённую физическую работу.

Высказываются научные идеи о возможности перемещения во времени (как в будущее, так и в прошлое). С 1989 года в научных изданиях появляются статьи о «бросках через время» с помощью «кротовых нор пространства», «червоточин», чёрных дыр, соединяющих различные точки трёхмерного мира по более короткому пути в четвёртом измерении. Впервые идею существования во Вселенной каких-то мостов высказали ещё в 1916 году. В конце 50-х годов XX века Д. Уилеру принадлежит более современное название теории – «червячные ходы». В качестве авторов «дырочных» теорий нужно отметить учёных: астрофизика К. Торна, У. Юртсевера (Калифорнийский технологический институт), М. Морриса (Университет в г. Висконсин), В.С. Барашенкова (г. Дубна), И.Д. Новикова и В.П. Фролова (Московский институт космических исследований).

Вклад в науку о времени внесли учёные: А. Сахаров, Ю. Фомин, И. Пригожин, Н. Козырев, А. Вейник, А. Охатрин. В.И. Вернадский высказал гипотезу о неоднородности и неравномерности биологического времени. В науке обсуждаются гипотезы об одновременности времени для сознания (прошлого, настоящего и будущего).

Концепция многомерности пространства-времени.

Поиск решений многих выявившихся физических несоответствий был начат ещё в середине XIX века и получает дальнейшее развитие в концепции многомерности пространства к времени.

Сущность концепции многомерности.

Точка не имеет измерений – это нульмерная система. Если её перемещать, то образуется линия – одномерная система, имеющая только одно измерение – длину. При перемещении линии образуется плоскость – двухмерная система, при перемещении плоскости – объём, трёхмерная система.

Если точку рассматривать как разрез линии, линию – как разрез плоскости, поверхность – как разрез тела, то по аналогии с этим трёхмерное тело можно рассматривать как разрез тела четырёх измерений, а трёхмерное пространство – как разрез четырёхмерного. Это приводит к мысли, что трёхмерные тела могут быть разрезами частей одного четырёхмерного тела.

Взаимосвязи между различными (по мерности) системами могут быть сформулированы в виде постулатов.

Постулат 1. Любая система высшего измерения может содержать бесчисленное множество независимо существующих систем низшего измерения; на плоскости можно разместить сколько угодно линий, в объёме сколько угодно плоскостей и т.д.

Постулат 2. Всякое понятие о расстояниях справедливо только в определённой системе измерения; при переходе к высшей системе измерения расстояние между двумя любыми точками может быть сведено к нулю или бесконечно малой величине.

Постулат 3. Искривление пространства в высшем измерении не обнаруживается в низшем; это значит, что линию (одномерная система) можно искривить только в плоскости (двумерная система), а плоскость только в объеме и т.д.

Постулат 4. Физические тела могут проявляться в разных системах измерения, причём, чем ниже система, тем более упрощённо воспроизводится оригинал, сложные объекты проявляются в низшем измерении в виде следа, проекции или сечения.

Постулат 5. Чем выше мерность системы, тем большей информационной ёмкостью она обладает, хотя бы потому, что она включает в себя множество низших систем.

Постулат 6. Система низшего измерения любого порядка в высших измерениях может свёртываться в точку без нарушения её целостности, при этом все точки низшей системы, сохраняя своё расположение, оказываются совмещёнными.

Приведённые постулаты сформулированы на основании трёх известных измерений. Если гипотеза о многомерности справедлива, то эти постулаты могут позволить выявить проявление высших измерений в трёхмерном мире.

Элементы теории многомерности уже учитываются современными физиками. Однако препятствием к реализации этой концепции является спор на тему – сколько же реально существует измерений? Одни из них утверждают, что шесть, а другие – одиннадцать. Высказываются и другие предположения. Но сущность, видимо, заключается не в количестве измерений, а в самом понятии мерности.

Мерность – это не отражение объективной реальности, а только форма восприятия объективной реальности живым субъектом, осознания определённого объёма информации его возможностями и способностями. Многомерность мироздания есть результат многомерности сознания, многомерность сознания приводит человека к системному восприятию многомерности мироздания. Многомерные измерения – это разные грани того, что человек воспринимает как реальность. Посредством сознания человек может войти в состояние, где открыто все возможное (нелокальность пространства, Целое, единство с Космосом, нравственно-духовное здоровье). Цель эволюции сознания – состояние личности, направленное на познание мира целиком.

В качестве примера можно привести парадокс Эйнштейна – Подольского – Розена, иллюстрируемый опытом By. Это явление находит объяснение с позиции многомерности, так как в этом случае связь между фотонами может существовать на уровне высших измерений. По всей вероятности, таким образом, могут быть объяснены явления, известные в физике под общим названием – дальнодействие.

Все попытки объяснить природу полей в рамках четырёхмерного континуума не увенчались успехом. Можно предположить, что все полевые явления связаны с проявлением высших (выше третьего пространственного) измерений. Первые шаги в рассмотрении этого аспекта в теории поля были сделаны физиком из Кенигсбергского университета Т. Калуци. Он попытался объединить гравитационные, электромагнитные, сильные и слабые взаимодействия в единой теории, используя для этого четвёртое пространственное измерение. Позже работы Калуци получили развитие в работах шведского физика О. Клейна, он высказал предположение, что в четвёртом измерении пространство имеет микроскопически малый радиус. Подобная идея высказывалась ещё в начале века русским исследователем П.Д. Успенским. В настоящее время гипотеза о многомерной природе полей завоёвывает всё более широкий круг сторонников.

См. Кириленко Н.Я. Концепции современного естествознания. – Коломна: КИППК, 2005.

Кириленко Н.Я. Естественнонаучная картина мира. – Коломна: КФ ВАУ, 1999.

Кириленко Н.Я. Физическая картина мира. – Коломна: КФ ВАУ, 1997.

Источник

Пространство и время в теории относительности

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

Специальная теория относительности (СТО), созданная в 1905 году Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца. Она основывается на двух принципах: постоянства скорости света в пустоте и относительности. Согласно первому принципу или постулату, скорость света в пустоте является предельной скоростью физических взаимодействий, она постоянна и составляет 300000 км/с. Постулат относительности утверждает, что законы электромагнитных явлений инвариантны, независимы от равномерного и прямолинейного движения систем. На основе этих принципов Эйнштейн разработал теорию физического пространства и времени, в которой последние оказываются зависимыми от движения физических тел: по мере приближения скорости движения тел к скорости света протяженность тел сокращается, а время течет медленнее. Используя формулы Лоренца, эту зависимость можно представить следующим образом:

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто,

где l – длина тела в движущейся системе со скоростью Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто; l0 длина тела в покоящейся системе.

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто,

где t – время движущегося тела; t0 – время покоящегося тела; с – скорость света.

Представления СТО оказались в противоречии с представлениями классической механики. Из основных положений этой теории вытекало, что одновременность различных событий носят не абсолютный, а относительный характер. В классической физике абсолютный характер одновременности был связан с представлением о возможности мгновенной передачи физических взаимодействий в любую точку пространства. Эйнштейновское определение одновременности базируется на представлении о конечной скорости распространения любых материальных сигналов. Отсюда следует, что события, одновременные в одной движущейся материальной системе, могут оказаться неодновременными в другой системе, может даже изменится сам порядок их следования. Таким образом, можно говорить о собственном времени каждой системы отсчета. Универсальное абсолютное ньютоновское время должно уступить место бесконечным собственным временам различных инерциальных систем.

Специальная теория относительности связала воедино пространство и время, но она рассматривает их еще до некоторой степени самостоятельно по отношению к материи. Общая теория относительности (ОТО) или теория тяготения, созданная Эйнштейном через 10 лет после специальной, окончательно преодолевает эту ограниченность. Она рассматривает пространственно – временные характеристики в зависимости от распределения вещества и поля во Вселенной: чем выше плотность вещества и поля, тем более искривлено пространство и тем сильнее эффект «замедления времени» под действием полей тяготения. Величина кривизны пространства и замедления ритма времени определяется величиной, движением и распределением материальных масс, напряженностью поля тяготения.

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

В ОТО Эйнштейн расширяет принцип относительности, распространяя его на неинерциальные системы. В ней он также исходит из экспериментального факта эквивалентности масс инерциальных и гравитационных, или эквивалентности инерционных и гравитационных полей. Общая теория относительности заменяет закон тяготения Ньютона новым уравнением тяготения. Закон Ньютона получается как предельный случай эйнштейновских уравнений. Рассчитанное теоретически Эйнштейном отклонение луча света было впоследствии экспериментально подтверждено во время солнечного затмения, когда луч света от звезды проходит вблизи поля тяготения Солнца.

Таким образом, теория относительности исключила из науки понятие абсолютного пространства и абсолютного времени, обнаружив тем самым несостоятельность субстанциальной трактовки пространства и времени как самостоятельных, независимых от материи форм бытия. Она показала зависимость пространственно – временных свойств от характера материальных систем, подтвердилась правильность трактовки пространства и времени как основных форм существования материи. Сам Эйнштейн, отвечая на вопрос о сущности теории относительности сказал: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы и пространство и время».

Общая теория относительности показала зависимость геометрии от физики, зависимость геометрических свойств пространства и времени от физических свойств материи. На основании ОТО возникла релятивистская космология в которой выдвинут ряд современных моделей Вселенной.

Источник

Контрольная работа: Пространство и время в свете теорий относительности А. Эйнштейна

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

Тема: Пространство и время в свете теорий относительности А. Эйнштейна

Тип: Контрольная работа | Размер: 27.63K | Скачано: 147 | Добавлен 21.12.11 в 19:07 | Рейтинг: 0 | Еще Контрольные работы

Год и город: Ярославль 2010

Содержание

1.Понимание пространства и времени в специальной теории относительности.

2. Понимание пространства и времени в общей теории относительности.

3. Физический смысл идей Альберта Эйнштейна.

Введение.

Вопрос о познавательном статусе категорий пространства и времени решался по-разному. Одни философы считали пространство и время объективными характеристиками бытия, другие — чисто субъективными понятиями, характеризующими наш способ восприятия мира. Были и философы, которые, признавая объективность пространства, приписывали чисто субъективный статус категории времени, и наоборот.

В истории философии существовали две точки зрения об отношении пространства и времени к материи. Первую из них можно условно назвать субстанциальной концепцией. В ней пространство и время трактовали как самостоятельные сущности, существующие наряду с материей и независимо от нее. Соответственно отношение между пространством, временем и материей представлялось как отношение между двумя видами самостоятельных субстанций. Это вело к выводу о независимости свойств пространства и времени от характера протекающих в них материальных процессов.

Вторую концепцию можно именовать реляционной (от слова relatio — отношение). Ее сторонники понимали пространство и время не как самостоятельные сущности, а как системы отношений, образуемых взаимодействующими материальными объектами. Вне этой системы взаимодействий пространство и время считались несуществующими. В этой концепции пространство и время выступали как общие формы координации материальных объектов и их состояний. Соответственно допускалась и зависимость свойств пространства и времени от характера взаимодействия материальных систем.

В работе рассмотрим понятия «время» и «пространство» в знаменитой теории относительности Альберта Эйнштейна.

В сознании людей, знакомство которых с теорией относительности ограничивается сведениями из школьных учебников, она ассоциируется прежде всего с принципом относительности Эйнштейна. Недаром даже В.Высоцкий, рассуждая об относительности человеческих суждений, сразу вспомнил и эту теорию: «… даже Эйнштейн, физический гений, весьма относительно все понимал…». Между тем для физики основное значение теории относительности состояло в том, что она привела к переосмыслению физиками содержания важнейших для их концепций понятий – понятий пространства и времени. Важность их не вызывает никаких сомнений: если мы внимательно проанализируем методы, используемые как при экспериментальном исследовании физических явлений, так и при их теоретическом описании, мы заметим, что в их основе лежат представления именно о пространстве и времени. Мы вообще не можем построить в своем сознании образ реальных событий, не используя характеристик «где» и «когда».

1. Понимание пространства и времени в специальной теории относительности.

Специальная теория относительности (СТО) (частная теория относительности; релятивистская механика) — теория, описывающая движение, законы механики и пространственно-временные отношения при скоростях движения, близких к скорости света.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от системы отсчёта. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является безусловно верной теорией в своей области применимости. По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать».

Пространство обычно представляется нам непрерывным – мы можем вообразить предметы сколь угодно малого размера и прийти к понятию точки как элемента пространства с нулевым размером. На основе представлений о направлениях формулируются понятия «прямой» и «угла», а далее мы устанавливаем трехмерность пространства – через заданную точку можно провести не более трех взаимно перпендикулярных прямых. Если подходить к восприятию мира более практично, можно заметить, что для получения полного представления о размерах произвольного предмета нам необходимо определить три расстояния – длину, ширину и высоту. Кроме того, мы обычно считаем, что разные точки пространства различаются не сами по себе, а лишь по наличию или отсутствию рядом с ними каких-либо тел. Говоря точнее, мы считаем, что поведение системы тел не изменится, если мы перенесем их в другое место в пространстве, в точности воссоздав внешние воздействия на эту систему. Это свойство пространства называют однородностью. Аналогично мы считаем, что все направления в пространстве одинаковы по свойствам, то есть что оно изотропно. Большие споры с древних времен вызывал вопрос о безграничности и бесконечности пространства. Обратим внимание: это два разных понятия. Безграничность представляется достаточно естественным свойством пространства (как говорили в Древней Греции, «где бы не встал воин, он может протянуть свое копье еще дальше»), в то время как его бесконечность вовсе не очевидна. Можно привести в качестве примера одномерное пространство точек окружности конечного радиуса – оно явно конечно, но никаких границ перемещающаяся по нему точка не встретит. Тем не менее большинству мыслителей древнего мира более логичной казалась картина бесконечного пространства: «…и по природе своей столь бесконечно пространство, что даже молнии луч обежать его был бы не в силах, в долгом течении веков бесконечно свой путь продолжая». Итак, наш опыт и логика приводят нас к заключению: наше пространство – непрерывное, трехмерное, однородное, изотропное, безграничное и бесконечное. Более детальное изучение свойств точек, прямых и углов позволило Евклиду зафиксировать эти свойства в виде системы утверждений – аксиом, на основе которых строится математическое описание геометрии пространства. Ее обычно называют евклидовой геометрией, и именно ее изучают в школе.

Аналогичный анализ свойств времени (внимательный читатель без особого труда может убедиться в этом сам) приведет нас к выводу, что время мы обычно представляем себе непрерывным, одномерным, однородным, бесконечным и анизотропным. Последнее свойство отражает явное различие направлений в прошлое и будущее с нашей точки зрения: в будущее мы все движемся, хотя и не по своей воле, а в прошлое мы двигаться не можем.

Реляционная концепция пространства и времени замечательно согласуется с ролью эталонов в пространственно-временных измерениях. Более того: после некоторых размышлений можно заметить, что «свое» пространство и время существуют у каждой системы: физической, химической, биологической, социальной – каждая из них характеризуется своим набором типичных размеров («пространственной шкалой») и набором периодов ритмических процессов («спектром частот»). Поэтому любая формализованная теория, описывающая некоторую систему, содержит описание пространства и времени, соответствующих именно этой системе. Ясно, например, что время, измеряемое пружинными часами, может не совпадать со временем, воспринимаемым человеком в субъективных ощущениях. Отличительной чертой подхода, практикуемого в физике, является именно попытка построить описание «пространства и времени вообще». И стремление к обобщению поначалу препятствовало внедрению идеи реляционности в физике.

2. Понимание пространства и времени в общей теории относительности.

Общая теория относительности (ОТО; нем. allgemeine Relativitätstheorie)— геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.

ОТО в настоящее время — самая успешная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что качественно и количественно подтвердило предсказания общей теории относительности. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Согласно общей теории относительности, тела всегда перемещаются по прямым в четырехмерном пространстве-времени, но мы видим, что в нашем трехмерном пространстве они движутся по искривленным траекториям.

Масса Солнца так искривляет пространство-время, что, хотя Земля движется по прямой в четырехмерном пространстве, мы видим, что в нашем трехмерном пространстве она движется по круговой орбите. Орбиты планет, предсказываемые общей теорией относительности, почти совпадают с предсказаниями ньютоновской теории тяготения. Однако в случае Меркурия, который, будучи ближайшей к Солнцу планетой, испытывает самое сильное действие гравитации и имеет довольно вытянутую орбиту, общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца примерно на один градус в десять тысяч лет. Несмотря на его малость, этот эффект был замечен еще до 1915 г. и рассматривался как одно из подтверждений теории Эйнштейна. В последние годы радиолокационным методом были измерены еще меньшие отклонения орбит других планет от предсказаний Ньютона, и они согласуются с предсказаниями общей теории относительности.

Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Смотреть картинку Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Картинка про Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто. Фото Чем обусловлена необходимость пересмотра представлений о пространстве и времени с позиций сто

Рис.1

Лучи света тоже должны следовать геодезическим в пространстве-времени. Искривленность пространства означает, что свет уже не распространяется прямолинейно. Таким образом, согласно обшей теории относительности, луч света должен изгибаться в гравитационных полях, и, например, световые конусы точек, находящихся вблизи Солнца, должны быть немного деформированы под действием массы Солнца. Это значит, что луч света от далекой звезды, проходящий рядом с Солнцем, должен отклониться на небольшой угол, и наблюдатель, находящийся на Земле, увидит эту звезду в другой точке (рис. 1). Конечно, если бы свет от данной звезды всегда проходил рядом с Солнцем, мы не могли бы сказать, отклоняется ли луч света или же звезда действительно находится там, где мы ее видим. Но вследствие обращения Земли все новые звезды заходят за солнечный диск, и их свет отклоняется. В результате их видимое положение относительно остальных звезд меняется.

3. Физический смысл идей Альберта Эйнштейна.

Революция в физике XXI в. ознаменовалась разработкой таких неклассических теорий (и соответствующих физических исследовательских программ), как частная (специальная) и общая теории относительности, квантовая механика, квантовая теория поля, релятивистская космология и другие, для которых характерно существенное развитие представлений о пространстве и времени.

Была выяснена необоснованность двух фундаментальных положений о пространстве и времени в классической механике: промежуток времени между двумя событиями и расстояние между двумя точками твёрдого тела не зависят от состояния движения системы отсчёта. Поскольку скорость света одинакова во всех системах отсчёта, то от этих положений приходится отказаться и сформировать новые представления о пространстве и времени.

Общая теория относительности является основой современной релятивистской космологии. Непосредственное применение общей теории относительности ко Вселенной даёт неимоверно сложную картину космического пространства-времени: материя во Вселенной сосредоточена в основном в звёздах и их скоплениях, которые распределены неравномерно и соответствующим образом искривляют пространство-время, оказывающееся неоднородным и неизотропным. Это исключает возможность практического и математического рассмотрения Вселенной как целого.

В настоящее время разрабатывается теория, объединяющая все фундаментальные физические взаимодействия, включая гравитационные. Однако выяснилось, что в этом случае речь идёт о пространствах 10, 26 и даже 605 размерностей. Исследователи надеются, что чрезмерный избыток размерностей в процессе компактификации удастся «замкнуть» в области планковских масштабов и в теорию макромира войдёт лишь привычное четырёхмерное пространство-время. Что же касается вопросов о структуре пространства-времени глубокого микромира или о первых мгновениях Большого взрыва, то ответы на них будут найдены лишь в физике 3-го тысячелетия.

Заключение.

В первой четверти XX в. произошла вторая в истории естествознания универсальная научная революция, приведшая к полной ломке классической гравитационной физико-космологической картины мира. Эта революция готовилась многими, но своим свершением она обязана одному из величайших физиков современности Альберту Эйнштейну (1879—1955). Фундаментом для создания этой новой научной картины мира стали две его физические теории — специальная и общая теория относительности. Ньютоновская физическая (гравитационно-механическая) картина мира, дополненная к концу XIX в. идеями электродинамики Максвелла и Лоренца, опиралась на представления о полностью независимом, или абсолютном существовании и качествах таких фундаментальных сущностей как пространство, время, материя. В частности, пространство представлялось «прямолинейным» (плоским) евклидовым, бесконечным, материя же — состоящей из нейтральных атомов, которые в свою очередь составлялись из электрически заряженных частей (электрон и некая заряженная положительно «основа» атома).

В отношении микромира благодаря Эйнштейну совершился, прежде всего, переход определенных представлений из области научных экстраполяции — картины мира — в область достоверного знания — науку. Его теория броуновского движения (беспорядочного движения микрочастиц вещества, взвешенных в жидкости) открыла путь к доказательству атомной структуры вещества, остававшейся гипотезой в течение тысячелетий.

Эйнштейн создал квантовую теорию фотоэффекта и тем самым физически обосновал другую древнюю гипотезу — дискретной природы света. Но при этом вскрывался истинный новый смысл самой дискретности света — «кванты излучения» вместо «твердых частиц». Таким образом, и в области микромира теории Эйнштейна вызвали революцию — коренное изменение научной картины микромира. На основе идей Планка и Эйнштейна в середине 20-х годов XX в. была создана (Гейзенбергом и Шрёдингером) квантовая механика, заменившая собою классическую механику при описании явлений микромира.

Таким образом создание теории относительности является основным трудом Альберта Эйнштейна. Она перевернула взгляды на пространство и время. В то же время в теории относительности нашли много противоречий и называли ее «фарсом», но не смотря на это теория относительности является большим открытием в науке. А ее создатель, Альберт Эйнштейн, является Нобелевским лауреатом в области физики, а так же он был удостоен многих других наград, в том числе медали Копли Лондонского королевского общества (1925) и медали Франклина Франклиновского института (1935).

Список литературы.

1. Горелов А.А. Концепции современного естествознания – М, 1997 г.

2.Грюнбаум А. Философские проблемы пространства и времени. – М.; 1969 г.

3. Сиама Д. Физические принципы общей теории относительности. – М.; 1971 г.

4. Эйнштейн А. Теория относительности. –М. 2000 г.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *