Чем обусловлена избирательная проницаемость мембраны
Избирательная проницаемость
Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.
Содержание
Основные сведения
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Функции биомембран
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Структура и состав биомембран
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.
Мембранные органеллы
Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
Мембранная теория возбуждения
Поверхностный слой цитоплазмы живой клетки обладает избирательной проницаемостью к ионам. Это обусловлено его молекулярным строением. Под электронным микроскопом установлено, что поверхностный слой клетки состоит из определенным образом ориентированных молекул белков и липидов. Толщина его различна у разных клеток, например у эритроцитов 10-20 нм, а у мякотных нервных волокон около 7,5-10 нм. Поверхностный слой клетки обозначается как ее мембрана. Мембрана — это не анатомическое понятие, а физиологическое. Поверхностному слою цитоплазмы свойственны особые функции взаимодействия со средой, окружающей клетку.
На мембране находятся системы ферментов — катализаторов биохимических процессов, происходящих в мембране, в цитоплазме и во всех внутренних образованиях клетки.
Избирательная проницаемость мембраны обусловлена тем, что в ней между молекулами имеются очень узкие промежутки диаметром в десятые доли нанометра — поры. Через эти поры проходят молекулы воды и гидратированные ионы. Диаметр пор при возбуждении иной, чем при покое. В нервных волокнах на мембране располагаются диссоциированные фосфатные и карбоксильные группы, что обусловливает ее значительно меньшую проницаемость для анионов, чем для катионов. Мембрана нервных волокон в покое в 20-100 раз более проницаема для ионов калия, чем для ионов натрия. В невозбужденных нервных и мышечных клетках в 20-50 раз больше ионов калия, в 10-12 раз меньше ионов натрия, и в 14-50 раз меньше ионов хлора, чем снаружи, во внеклеточной жидкости.
Предполагается, что в покое поры мембраны, через которые проходят ионы Ка, закрыты ионами Са, электростатически задерживающими вход в клетку ионов Na. Ионы Са имеют существенное значение для проницаемости мембраны к ионам № и К. Уменьшение концентрации ионов Са снаружи увеличивает количество и скорость прохождения через мембрану ионов Na и К. При, отсутствии снаружи ионов Са наблюдается полная невозбудимость миелиновых нервных волокон. Существует «кальциевый насос», но проницаемость мембраны для иона Са в два раза меньше, чем для иона Na. Поток ионов Са внутрь клетки незначителен, при возбуждении он увеличивается, а выход ионов Са наружу не меняется.
При отсутствии раздражения существует электрическая поляризация мембраны, так как между наружной и внутренней поверхностями цитоплазматической мембраны имеется разность потенциалов благодаря неравномерному распределению ионов. Цитоплазматическая мембрана в покое проницаема для катионов и непроницаема для выхода из клетки связанных с ними анионов (органических и хлора).
Так как в цитоплазме большинства клеток концентрация ионов К значительно больше, чем в окружающей среде, то они проходят через мембрану вдоль концентрационного градиента на наружную ее поверхность.
Примерно на расстоянии 30 нм от поверхности клетки располагается слой катионов К. Так как анионы хлора не выходят через мембрану и медленно диффундируют из внеклеточной жидкости в цитоплазму, то они накапливаются у внутренней поверхности мембраны и вместе с органическими анионами электростатически удерживают ионы Na и К. Поэтому в покое наружная поверхность мембраны заряжена электроположительно, а ее внутренняя поверхность — электроотрицательно.
При повреждении клетки отводится потенциал внутренней поверхности мембраны, т. е. электроотрицательный. В покое клеточный потенциал регистрируется прокалыванием мембраны микроэлектродом и, следовательно, отведением тока от внутренней ее поверхности. В покое величина клеточного потенциала, или разности потенциалов, наружной и внутренней поверхностей мембраны, у разных клеток неодинакова (Ходжкин, 1951; Хаксли, 1952).
В возникновении клеточного потенциала участвуют и ионы Na, которые диффундируют в цитоплазму клетки из внеклеточной жидкости, где их содержание значительно больше, чем внутри клетки. Но в покое проницаемость мембраны к ионам На очень мала. Так как в покое сравнительно большая диффузия положительно заряженных ионов К на наружную поверхность клетки преобладает над сравнительно небольшой диффузией положительно заряженных ионов Na внутрь клетки, то снаружи клетки создается перевес положительно заряженных ионов и разность потенциалов между наружной и внутренней сторонами мембраны несколько меньше вычисленной по формуле Нернста. Величина клеточного потенциала для нервных и мышечных волокон по формуле равна примерно 90 мв, а измеренная в опыте — 60-70 мв.
Согласно современной мембранной теории, потенциал покоя является разностью биопотенциалов между наружной поверхностью мембраны и цитоплазмой при покое клетки. Эта разность обусловлена диффузией ионов калия, натрия и хлора. Это подтвердилось при математических расчетах диффузии, которые почти совпали с величиной потенциала покоя, установленной в эксперименте на нервных волокнах.
Диффузия ионов через мембрану изучена посредством радиоактивных изотопов Na 24 и К 42 («меченых атомов»).
Мембранный потенциал у большинства клеток меньше 100 мв. У высокодифференцированных клеток клеточный потенциал больше, чем у менее дифференцированных. У нервных и мышечных клеток он больше, чем у эпителиальных. Клеточный потенциал изменяется с возрастом.
Ходжкин и Катц с сотр. в 1939-1940 гг., вводя внутрь клетки микроэлектроды и регистрируя при этом клеточные потенциалы, обнаружили, что в месте возбуждения возникает потенциал действия и происходит не только полная деполяризация, а возникает разность потенциалов, противоположная той, которая была в покое, — примерно — 40 мв (знак минус означает противоположное направление разности потенциалов). Вольтаж потенциала действия превышает вольтаж клеточного потенциала покоя. Этот «перескок» потенциалов при возбуждении клетки тем больше, чем больше диаметр клетки. В небольших клетках, например во вставочных нейронах спинного мозга, он незначителен или отсутствует. Оказалось (Ходжкин и Катц, 1949), что превышение потенциала действия над клеточным потенциалом зависит от большей концентрации ионов Na в тканевой жидкости, окружающей клетку, чем внутри клетки. При помещении нервных и мышечных клеток в растворы с пониженным содержанием ионов т. е. при уменьшении концентрации ионов Na снаружи клетки, «перескок» при возбуждении уменьшается, а затем исчезает. Когда содержание ионов Na снаружи клетки уменьшается до 1/3-1/6 их нормальной концентрации, превышение потенциалом покоя исчезает. И, наоборот, когда содержание снаружи ионов Na снаружи клетки увеличивается и становиться избыточным, реверсия увеличивается. Цитоплазма клетки постоянно выталкивает ионы Na, поступающие по концентрационному градиенту внутрь клетки («натриевый насос»). В покое, когда количество ионов Na, поступавших в клетку и выталкивающих в клетку и вытолкнутых из неё, уравнивается, распределение ионов Na снаружи и внутри клетки такое же, как при непроницаемости мембраны к этим ионам. Натриевый «насос» поддерживает внутреннюю концентрацию Na в нервном волокне на уровне около 10% от его наружной концентрации.
Когда возникает возбуждение, мгновенно теряется способность цитоплазмы выталкивать ионы Na и они очень быстро поступают внутрь клетки вдоль концентрационного градиента.
При возбуждении резво увеличивается проницаемость мембраны для ионов Na, она приблизительно в 10 раз превосходит проницаемость для ионов К. Диффузия положительно заряженных ионов Na внутрь клетки начинает значительно превышать диффузию положительно заряженных ионов K не внешнюю поверхность мембраны.
При возбуждении и деполяризации мембраны ионы Ca удаляются и открывают поры, по которым ионы Na проникают внутрь клетки.
Переносимые ионами Na внутрь клетки положительные заряды заряжают мембрану в противоположном направлении, не более чем на 50 мв. Невозможность превышения этой максимальной величины потенциала действия объясняется тем, что при каждом импульсе возбуждения повышается проницаемость мембраны к ионам K, которые, выходя из клетки наружу, т.е. двигаясь в противоположном направлении, не более чем на 50 мв. Невозможно превышения этой максимальной величины потенциала действия объясняется тем, что при каждом импульсе возбуждения повышается проницаемость мембраны к ионам К, которые, выходя из клетки наружу, т.е. двигаясь в противоположном направлении по сравнению с ионами Na, уменьшают потенциал действия, а затем восстанавливают прежнюю величину клеточного потенциала. Ионы Na, проникая при возбуждении внутрь клетки, усиливают способность мембраны переносить их внутрь клетки.
Следовательно, при возбуждении количество ионов № в цитоплазме клетки увеличивается, а количество ионов К уменьшается. Затем благодаря активности цитоплазмы исходные концентрации этих ионов восстанавливаются. Во время восстановительного периода ионы Nа выталкиваются из клетки.
Оказалось, что существует не только активное выталкивание из цитоплазмы ионов Ma против концентрационного градиента («натриевый насос»), но и активное накопление ионов К внутри клетки («калиевый насос») против их концентрационного градиента. В покое ионы Ca выталкиваются из клетки наружу в обмен на ионы К или на ионы Ma, поступающие снаружи. Следовательно, обмен обоими ионами через мембрану взаимосвязан.
При замене цитоплазмы нервных волокон кальмара раствором К оказалось, что если содержание ионов К в растворе было близко к внутриклеточному, то отводился обычный клеточный потенциал, но если содержание ионов К в растворе уменьшалось, то клеточный потенциал снижался или даже извращался. Функционирование обоих «насосов» обусловлено затратой энергии обмени веществ (АТФ и креатинфосфата). АТФ расщепляется ферментом аденозинтрифосфатазой. Предполагается, что передача возбуждения с двигательного нерва на мышечные волокна происходи г при участии «кальциевого насоса», также работающего за счёт энергии, освобождающейся при расщеплении АТФ.
При подпороговых раздражениях возникает местный потенциал, так как перенос ионов Ма не достигает критического уровня, при котором этот процесс усиливается мембраной. При пороговых раздражениях достигается этот критический уровень, и ионы Ма, проникающие в клетку, усиливают активный перенос мембраной ионов Ма внутрь клетки.
Рефрактерность в связи с интенсивной деполяризацией зависит от того, что уже на высоте возбуждения прекращается активный перенос ионов Ма внутрь клетки и усиливается проницаемость мембраны к ионам К и их выход наружу, что повышает порог раздражения или создает полную невозбудимость.
Аккомодация к постепенно усиливающемуся раздражению и катодическая депрессия Вериго — результат частичного прекращения активного переноса ионов На при длительной иодпорого-вой деполяризации мембраны.
При переходе от возбуждения к покою усиливается выход ионов К из цитоплазмы клетки наружу, при этом восстанавливается поляризация, что обозначается как реполяризация.
Сначала реполяризация протекает быстро, а потом замедляется, что соответствует отрицательному следовому потенциалу. Одновременно снижается или теряется проницаемость мембраны для диффузии ионов Ка в клетку снаружи, которая обозначается как инактивация (Ходжкин). При ритмических раздражениях инактивация усиливается.
Гиперполяризация мембраны нервной клетки, или увеличение разности потенциалов между наружной и внутренней поверхностями мембраны, при действии тормозящих синапсов зависит от избирательного повышения проницаемости мембраны к ионам К и Сl, которые имеют значительно меньший диаметр гидратной оболочки, чем ионы Na. При действии медиатора ионы К начинают в большем количестве проходить через мембрану на поверхность клетки, а ионы Сl — больше диффундировать внутрь клеток, что увеличивает электроположительный заряд мембраны.
После достижения критического уровня ионы Сl начинают выходить наружу.
Длительная гиперполяризация восстанавливает активный перенос ионов Nа внутрь клетки, что проявляется в повышении возбудимости после анэлектротона.
Гиперполяризация происходит также при замыкании постоянного электрического тока под анодом, а под катодом при этом возникает деполяризация. Эти электротонические изменения мембранного потенциала имеют физическую природу, они пассивны, чем отличаются от активной гиперполяризации и активной деполяризации при возбуждении, которые возникают вследствие изменения проницаемости мембраны для ионов Na и К.
Следовые потенциалы, которые наблюдаются после пика тока действия, объясняются следующим образом: отрицательный, деполяризационный потенциал зависит от остаточной активности переноса ионов а положительный, гиперполяризационный потенциал — от остаточного повышения проницаемости к ионам К.
Деполяризация мембраны при действии возбуждающих синапсов зависит от повышения проницаемости мембраны к большинству ионов под влиянием другого медиатора.
Повреждение клетки при введении в нее микроэлектродов уменьшает поляризацию, а не вызывает ее. Доказано, что катионы находятся в клетке не в связанном состоянии и обладают большой подвижностью. Подвижность радиоактивных изотопов К и Nа измерена. Огромное электрическое сопротивление мембраны подтверждает ее существование. Механизм ионной проницаемости мембран изучен недостаточно. Возможно, ионы проходят через поры вследствие изменения величины электрического поля на мембране, которая меняется при возбуждении. Необходима дальнейшая разработка мембранной теории: изучение молекулярного строения мембраны, выяснение роли ферментов, АТФ и других соединений в ее избирательной проницаемости и т. д.
Химические изменения в нервах. В нерве, как и мышце, окислительные процессы происходят и в состоянии относительного покоя. Во время возбуждения обмен веществ значительно возрастает и потребление кислорода и выделение углекислого газа заметно увеличиваются. Количество поглощенного нервом кислорода увеличивается в зависимости от повышения частоты его раздражения.
В покое в нервах расщепляется главным образом глюкоза, но окисляются не только углеводы, а также жиры и белки. При возбуждении увеличивается бескислородный распад углеводов, что приводит к образованию молочной и пировиноградной кислот. В нервных волокнах при возбуждении увеличивается синтез ацетилхолина при участии витамина В1 (анейрина). При возбуждении нервной ткани увеличивается также выход калия в окружающую среду, так как ацетилхолин освобождает калий. Выделяется также аммиак, что указывает на расщепление азотистых соединений. При раздражении нерва образование аммиака увеличивается почти в 3 раза. После перерыва связи нерва с центральной нервной системой синтез аммиака в нем падает. Следовательно, образование аммиака в нервах связано с поступлением волн возбуждения из центральной нервной системы.
При возбуждении в нервах расщепляются АТФ и креатинфосфорная кислоты. Есть основания считать, что при этом происходит обратимый распад креатинфосфата, но в отличие от мышцы отсутствует ресинтез гексозофосфага из молочной кислоты.
Существуют отличия в химических процессах, протекающих в разных нервах и различных участках нервной системы.
В филогенезе обмен веществ и нервах становится более экономным. Например, нервы беспозвоночных животных (беззубки) в покое потребляют в 5 раз больше кислорода и в 5 раз больше выделяют аммиака, чем мякотный нерв лягушки.
Избирательная проницаемость
Цитология
1. Элементарная мембрана, химический состав и свойства
мембрана (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия среды.
Структура и состав биомембран
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Мембрана всегда подвижна. Образует одномембранные у двумембранные органеллы!
2. Плазматическая мембрана, строение и функции. Обмен информацией между клеткой и окружающей средой.
Плюс: Схема передачи импульса.
Мембранные соединения и К-Na насос
3. Клеточные контакты и структура свободной клеточной поверхности.
Смотреть вышесказанное, особое внимание первой и третьей картинкам.
4. Оболочки клеток растительных, животных и бактериальных. Сравнительная характеристика.
5. Гиалоплазма, химический состав, структура и функции.
(от греч. hyalos — стекло и плазма), основная плазма, матрикс цитоплазмы, сложная бесцветная коллоидная система в клетке, способная к обратимым переходам из золя в гель. В состав Г. входят растворимые белки (ферменты гликолиза, активации аминокислот при биосинтезе белка, многие АТФ-азы и др.), растворимые РНК, полисахариды, липиды. Через Г. идёт транспорт аминокислот, жирных к-т, нуклеотидов, Сахаров, неорганических ионов, перенос АТФ. Состав Г. определяет буферные и осмотические свойства клетки.
Её функции поддержание гомеостаза клетки, транспорт веществ, создание среды, гидроскелета клетки.
6. Основы биосинтеза белка. Полисомы.
Три этапа синтеза белка:
Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы иРНК. В ходе ряда последовательных стадий процессинга из иРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам
происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.
Между транскрипцией и трансляцией молекула иРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК, — альтернативный сплайсинг.
Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК. Аминокислотная последовательность выстраивается при помощи транспортных РНК, которые образуют с аминокислотами комплексы — аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствующий антикодон, «подходящий» к кодону иРНК. Во время трансляции рибосома движется вдоль иРНК, по мере этого наращивается полипептидная цепь. Энергией биосинтез белка обеспечивается за счёт АТФ.
Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.
Полисомы.
Это несколько рибосом, одновременно транслирующих одну молекулу иРНК. Поскольку длина средней молекулы мРНК значительно превышает количество нуклеотидов, занимаемых на РНК рибосомой, одну молекулу РНК, в зависимости от скорости инициации одновременно транслируют несколько рибосом. Образование и количество рибосом в полисоме зависит от скорости инициации, элонгации и терминации на данной конкретной РНК. В настоящее время принята модель, в которой у эукариот начало мРНК (5′ нетранслируемый участок) и её конец (3′ нетранслируемый участок) расположены близко друг другу за счёт взаимодействия одного из факторов инициации трансляции IF4G/F с белком, ассоциированным с 3′ нетранслируемый участком (ПАБ).
7. Эндоплазматическая сеть. Гранулярная и гладкая. Строение и функционирование в клетках разного типа.
Нарисуйте как в альбоме:
Есть во всех клетках кроме сперматозоидов и эритроцитов.
При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.
Функции агранулярного эндоплазматического ретикулума
Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, нейтрализации ядов и запасании кальция. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.
К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.
Накопление и преобразование углеводов
Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.
Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют к молекулам токсичных веществ гидрофильные радикалы, в результате чего повышается растворимость токсичных веществ в крови и моче, и они быстрее выводятся из организма. В случае непрерывного поступления ядов, медикаментов или алкоголя образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.
Роль ЭПС как депо кальция
Концентрация ионов кальция в ЭПС может достигать 10−3 моль, в то время как в цитозоле составляет порядка 10−7 моль (в состоянии покоя). Под действием инозитолтрифосфата и некоторых других стимулов кальций высвобождается из ЭПС путем облегченной диффузии. Возврат кальция в ЭПС обеспечивается активным транспортом. При этом мембрана ЭПС обеспечивает активный перенос ионов кальция против градиентов концентрации больших порядков. И приём, и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи с физиологическими условиями.
Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как активация или инактивация ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток иммунной системы.
Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, представляет собой ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения.
Функции гранулярного эндоплазматического ретикулума
Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.
Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.
Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.
(2) Поры ядерной мембраны.
(3) Гранулярный эндоплазматический ретикулум.
(4) Агранулярный эндоплазматический ретикулум.
(5) Рибосомы на поверхности гранулярного эндоплазматического ретикулума.