Чем образованы гидрофильные поверхности мембран
Клеточные мембраны
Клеточные мембраны
Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.
Содержание
Основные сведения
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Функции биомембран
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Структура и состав биомембран
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.
Мембранные органеллы
Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клеки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
Урок биологии в 10-м классе «Строение и функции органоидов клетки. Плазматическая мембрана»
Разделы: Биология
Статья является конспектом урока-изучения и первичного закрепления новых знаний (курс “Общая биология”, 10 класс, по программе В.Б. Захарова).
Ход урока
Учитель: На прошлом уроке мы провели лабораторную работу “Плазмолиз и деплазмолиз в клетках кожицы лука”, при проведении которой познакомились с интересными явлениями. В чем их суть?
Ученики: При помещении растительной ткани (эпидермис чешуйки лука) в гипертонический раствор поваренной соли (NaCl) не происходило диффузии этого раствора в клетки, а наблюдался выход воды из вакуолей клеток в сторону гипертонического раствора NaCl, чтобы уравновесить концентрации ионов по обе стороны клеточной оболочки. При этом объем вакуолей и всей цитоплазмы в целом уменьшался, что вело к отхождению цитоплазмы от клеточной стенки – плазмолизу. При возвращении исследуемой ткани в чистую воду мы также не наблюдали выхода растворенных веществ из вакуолей, а только поступление воды из окружающего пространства внутрь клетки, в вакуоли с клеточным соком, что вело к восстановлению объема клетки до прежних границ – деплазмолизу.
Учитель: Какой вывод можно сделать из проведенного опыта?
Учитель: Свойство, которое мы обнаружили, называется избирательной проницаемостью или полупроницаемостью плазматической мембраны.
Что такое плазматическая мембрана (или плазмалемма), каково ее строение, свойства и функции мы и должны разобраться на сегодняшнем уроке. Как мы и договорились, вести урок будут ваши товарищи, которые подготовили лекцию о клеточных мембранах. Ваша задача – в процессе прослушивания записать основные сведения о клеточных мембранах. Полученные знания вы должны будете применить, отвечая на вопроса теста в конце урока.
Лектор 1. Строение мембран.
Плазматическая мембрана есть во всех клетках (под гликокаликсом – у животных и под клеточной стенкой у других организмов), она обеспечивает взаимодействие клетки с окружающей ее средой. Плазмалемма образует подвижную поверхность клетки, которая может иметь выросты и впячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы.
Несмотря на эти непрерывные изменения, клетка всегда остается охваченной плотно прилегающей мембраной. Плазматическая мембрана представляет собой тонкую пленку толщиной менее 10 нм. Даже при увеличении ее толщины в 1 млн. раз мы получим величину всего около 1 см, при этом, если всю клетку увеличить в 1 млн. раз, ее размер будет сравним с достаточно большой аудиторией.
Мембрана включает два основных типа молекул: фосфолипиды, образующие бислой в толще мембраны, и белки на ее поверхностях. Эти молекулы удерживаются вместе с помощью нековалентных взаимодействий. Такая модель мембраны, похожая на сэндвич, была предложена американскими учеными Даниели и Давсоном в 1935 году. С появлением электронного микроскопа она была подтверждена и несколько видоизменена. В настоящее время принята жидкостно-мозаичная модель мембраны, согласно которой белковые молекулы, плавающие в жидком липидном бислое, образуют в нем своеобразную мозаику. Схема этой современной модели, предложенной в 1972 году Сингером и Николсоном, дана в учебнике.
К некоторым белкам на наружной поверхности ковалентно прикреплены углеводы, образуя гликопротеины – своеобразные молекулярные антенны, являющиеся рецепторами. Гликопротеины участвуют в распознавании внешних сигналов, поступающих из окружающей среды или из других частей самого организма, и в реакции клеток на их воздействие. Такое взаимное узнавание – необходимый этап, предшествующий оплодотворению, а также сцеплению клеток в процессе дифференцирования тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунный ответ, в котором гликопротеины играют роль антигенов.
Лектор 2. Свойства мембран.
Рис. 1. Модели молекул.
Когда вещества подобного строения смешиваются с водой, их молекулы самопроизвольно принимают такую конфигурацию: гидрофильные головки погружаются в воду, а гидрофобные хвосты в контакт с водой не вступают, контактируя только между собой и с другими гидрофобными веществами, которые могут быть вокруг, например, с воздухом. Оказываясь на границе между двумя средами аналогичной природы, и молекулы мыла, и молекулы фосфолипидов способны к образованию бислоя. Некоторые важные свойства биологических мембран (как и мыльных пузырей), перечисленные далее, объясняются структурой липидного бислоя.
Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (“лектор” демонстрирует перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке). Гидрофобные хвосты могут свободно скользить друг относительно друга.
“Лектор” демонстрирует, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается. Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани). Этот же эффект наблюдается при разрезании клетки на две части микроножом, после чего каждая часть оказывается окруженной замкнутой плазматической мембраной.
То есть, непроницаемость для молекул, растворимых в воде, из-за маслянистой пленки, образованной гидрофобными хвостами фосфолипидных молекул. Чтобы физически проникнуть сквозь такую пленку, вещество само должно быть гидрофобным, или оно может протиснуться через случайные щели, образовавшиеся в результате молекулярных перемещений (мелкие молекулы, например, молекулы воды).
Белки, пронизывающие всю толщу мембраны, или располагающиеся на внешней и внутренней ее поверхностях, помогают клетке обмениваться веществами с окружающей средой. Белковые молекулы обеспечивают избирательный транспорт веществ через мембрану, являясь ферментами, кроме того, внутри белковых молекул или между соседними молекулами образуются поры, через которые в клетки пассивно поступают вода и некоторые ионы.
Лектор 3. Функции плазматической мембраны.
Лектор 4. Я хочу рассказать, как происходит транспорт через плазматическую мембрану, а аналогично и через другие мембраны клетки. Транспорт бывает пассивный, не требующий затрат энергии, и активный, энергозависимый, в процессе которого расходуется энергия, получаемая вследствие гидролиза молекул АТФ.
Это пассивный процесс; перемещение веществ осуществляется из области с высокой концентрацией в область с низкой концентрацией. Газы и липофильные (жирорастворимые) молекулы диффундируют быстро, ионы и малые полярные молекулы (глюкоза, аминокислоты, жирные кислоты) – медленно. Диффузию ускоряют поры в белковых молекулах.
Разновидностью диффузии является осмос – перемещение воды через мембрану.
Это активный транспорт веществ через мембрану в клетку (экзоцитоз – из клетки). В зависимости от характера переносимого через мембрану вещества различают два типа этих процессов: если переносится плотное вещество – фагоцитоз (от греч. “фагос” – пожирать и “цитос” – клетка), если же капли жидкости, содержащие разнообразные вещества в растворенном или взвешенном состоянии, то – пиноцитоз (от греч. “пино” – пить и “цитос” – клетка).
Принцип переноса в обоих случаях идентичен: в том месте, где поверхность клетки соприкасается с частицей или каплей вещества, мембрана прогибается, образует углубление и окружает частицу или каплю жидкости, которая в “мембранной упаковке” погружается внутрь клетки. Здесь образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества. Фагоцитоз широко распространен у животных, а пиноцитоз осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей.
3. Активный транспорт при использовании ферментов, встроенных в мембрану.
Перенос идет против градиента концентрации с затратами энергии, например, в клетку поступают (“накачиваются”) ионы калия, а из клетки выводятся (“выкачиваются”) ионы натрия. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. Такие клеточные транспортные системы принято называть “насосами”. Аналогично осуществляется транспорт аминокислот и сахаров.
Далее “лекторы” помогают слушателям сформулировать выводы по теме урока.
Для закрепления информации, полученной на уроке, ученикам предлагаются задания в формате ЕГЭ.
Часть “А”
Выберите один правильный ответ.
А1. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами:
1) гликогена и крахмала
2) ДНК и АТФ
3) белков и липидов
4) клетчатки и глюкозы
А2. Плазматическая мембрана не выполняет функцию:
1) транспорта веществ
2) защиты клетки
3) взаимодействие с другими клетками
4) синтеза белка
А3. Углеводы, входящие в структуру клеточной мембраны, выполняют функцию:
1) транспорта веществ
2) рецепторную
3) образования двойного слоя мембраны
4) фотосинтеза
А4. Белки, входящие в структуру клеточной мембраны выполняют функцию:
1) строительную
2) защитную
3) транспортную
4) все указанные функции
1) поглощение клеткой жидкости
2) захват твердых частиц
3) транспорт веществ через мембрану
4) ускорение биохимических реакций
А6. Гидрофильные поверхности мембран образованы:
1) неполярными хвостами липидов
2) полярными головками липидов
3) белками
4) углеводами
А7. Прохождение через мембрану ионов Na + и K + происходит путем:
1) диффузии
2) осмоса
3) активного переноса
4) не осуществляется
А8. Через липидный слой мембраны свободно проходит:
Часть “В”
Альтернативный тест (оцените каждое утверждение, “да” или “нет”):
1) при активном транспорте затрачивается энергия
2) фагоцитоз – это вид эндоцитоза
3) диффузия – это вид активного транспорта
4) клеточная стенка растений состоит из целлюлозы
5) осмос – это диффузия воды
6) пиноцитоз – это вид фагоцитоза
7) плазмалемма состоит из трех слоев липидов
8) у животной клетки нет клеточной стенки
9) плазмалемма обеспечивает связь клетки со средой обитания
Часть “С”
Задания со свободным развернутым ответом
С1. Каково значение эндоцитоза:
а) для простейших и низших беспозвоночных?
б) для высокоорганизованных животных и человека?
С2. Что является физической основой вакуолярного транспорта в клетке?
С3. Каково биологическое значение неровностей поверхности плазмалеммы некоторых клеток (микроворсинки, реснички и т.п.)?
С4. Электрический скат и электрический угорь оглушают свою жертву разрядами в несколько сотен вольт. Какие свойства плазмалемм клеток поддерживают возможность создания таких разрядов?
С5. Как работает функция плазмалеммы по снабжению клетки “удостоверением личности”?
Ответы к заданиям.
Часть “А”.
1–3, 2–4, 3–2, 4–4, 5–2, 6–2, 7–3, 8–2.
Часть “В”.
1, 2, 4, 5, 8, 9 – “да”; 3, 6, 7 – “нет”
Часть “С”.
1а. Возможность поступления пищи в клетки и дальнейшее переваривание в лизосомах.
1б. Фагоцитарная деятельность лейкоцитов имеет огромное значение в защите организма от болезнетворных бактерий и других нежелательных частиц. Пиноцитоз в клетках почечных канальцев приводит к всасыванию белков из первичной мочи.
2. Основные свойства липидных бислоев – способность мембран замыкаться.
3. Увеличение площади поверхности клетки для обмена между клеткой и окружающей ее средой.
4. Наличие ферментных систем, осуществляющих активный транспорт (“насосов”), приводит к перераспределению зарядов на плазмалемме и созданию мембранной разности потенциалов.
5. Для этого есть ряд специфических химических групп на поверхности мембраны – “антенны”, являющиеся, чаще всего, гликопротеинами.
1_1 Строение клеточной мембраны
Клеточная мембрана (плазмалемма или плазмолемма)
Определение понятия
Образное представление о мембране
Свойства мембраны
2. Полупроницаемость (частичная проницаемость).
3. Избирательная (синоним: селективная) проницаемость.
4. Активная проницаемость (синоним: активный транспорт).
5. Управляемая проницаемость.
6. Фагоцитоц и пиноцитоз.
9. Изменения электрического и химического потенциала.
10. Раздражимость. Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лигандов (управляющих веществ). Важно отметить, что сигнальное вещество воздействует на рецептор снаружи, а изменения продолжаются внутри клетки. Получается, что мембрана передала информацию из окружающей среды во внутреннюю среду клетки.
11. Каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.
12. Изменение формы поверхности и её площади. Это позволяет мембране образовывать выросты наружу или, наоборот, впячивания внутрь клетки.
13. Способность образовывать контакты с другими клеточными мембранами.
Краткий список свойств мембраны
Функции мембраны
1. Неполная изоляция внутреннего содержимого от внешней среды.
4. Через мембрану осуществляется также информационный обмен между клеткой и окружающей её средой. Специальные молекулярные рецепторы, расположенные на мембране, могут связываться с управляющими веществами (гормонами, медиаторами, модуляторами) и запускать в клетке биохимические реакции, приводящие к различным изменениям в работе клетки или в её структурах.
Видео: Строение мембраны клетки
Видеолекция: Подробно о строении мембраны и транспорте
Строение мембраны
Ниже представлены микрофотографии реальных клеточных мембран контактирующих клеток, полученные с помощью электронного микроскопа, а также схематический рисунок, показывающий трёхслойность мембраны и мозаичность её белковых слоёв. Для увеличения изображения кликните на него.
Отдельное изображение внутреннего липидного (жирового) слоя клеточной мембраны, пронизанного интегральными встроенными белками. Верхний и нижний белковые слои удалены, чтобы не мешать рассмотрению липидного двойного слоя
Рисунок выше: Неполное схематичное изображение клеточной мембраны (клеточной оболочки), приведённое в Википедии.
Учтите, что наружный и внутренний слои поверхностных белков здесь с мембраны сняты, чтобы нам лучше был виден центральный жировой двойной липидный слой. В реальной клеточной мембране сверху и снизу по жировой плёночке (мелкие шарики на рисунке) плавают большие белковые «острова», и мембрана получается более толстой, трёхслойной: белок-жир-белок. Так что она на самом деле похожа на сэндвич из двух белковых «кусков хлеба» с жирным слоем «масла» посередине, т.е. имеет трёхслойное строение, а не двухслойное.
Живая клетка — это маленький «белково-жировой мешочек», заполненный полужидким желеобразным содержимым, которое пронизано плёнками и трубочками.
Можно дать и более точное научное определение клетке:
Клетка – это ограниченная активной мембраной, упорядоченная, структурированная неоднородная система биополимеров, участвующих в единой совокупности обменных, энергетических и информационных процессов, и также осуществляющих поддержание и воспроизведение всей системы в целом.
Внутри клетка также пронизана мембранами, а между мембранами находится не вода, а вязкий гель/золь изменяемой плотности. Поэтому взаимодействующие молекулы в клетке не плавают свободно, как в пробирке с водным раствором, а в основном сидят (иммобилизованы) на полимерных структурах цитоскелета или внутриклеточных мембранах. И химические реакции поэтому проходят внутри клетки почти как в твердом теле, а не в жидкости. Наружная мембрана, окружающая клетку, также облеплена ферментами и молекулярными рецепторами, что делает её очень активной частью клетки.
Мембранные липиды
В состав липидов мембран входят в основном фосфолипиды, сфингомиелины и холестерин, а также в меньших количествах гликолипиды.
С химической точки зрения фосфолипид состоит из четырёх частей: глицерина, двух жирных кислот с длинной углеводородной цепью, фосфорной кислоты и особой для каждого фосфолипида группы, которую принято называть характеристической группой. Трёхатомный спирт глицерин связывает через сложно-эфирную связь две жирные кислоты и остаток фосфорной кислоты, к которой присоединена характеристическая группа (например, этаноламин).
fosfolipid.jpeg
Рис. ___. Структурная формула фосфатидилэтаноламина как пример амфифильной (гидрофобной/гидрофильной) молекулы фосфолипида. Кроме этаноламина характеристической группой фосфолипида может быть также холин, инозитол, серин и некоторые другие молекулы.
fosfatidilholin.jpg
Рис. ___. Молекулярная структура фосфатидилхолина (=лецитина). Источник изображения: https://pandia.ru/text/80/650/73429-4.php
Мембранная плёночка является двойной, т. е. она состоит из двух липидных плёночек, слипшихся друг с другом с помощью своих липидных «хвостиков». Поэтому в учебниках пишут, что основа клеточной мембраны состоит из двух липидных слоёв (или из «бислоя«, т.е. двойного слоя). У каждого отдельно взятого липидного слоя одна сторона может смачиваться водой, а другая — не может. Так вот, эти плёночки слипаются друг с другом именно своими несмачивающимися сторонами. Примерно так можно соединить две щётки, направив их щетиной друг к другу и слегка придавив.
Мембранные белки
Белки мембраны включены в липидный двойной слой двумя способами:
Интегральные белки различаются по степени погруженности в гидрофобную часть бислоя. Они могут располагаться по обеим сторонам мембраны и при этом либо частично погружаются в мембрану, либо располагаются трансмембранно. Погруженная часть интегральных белков содержит большое количество аминокислот с гидрофобными радикалами, которые обеспечивают гидрофобное взаимодействие с липидами мембран. Гидрофобные взаимодействия поддерживают определенную ориентацию белков в мембране. Гидрофильная выступающая часть белка не может переместиться в гидрофобный слой. Часть мембранных белков ковалентно связана с моносахаридными остатками или олигосахаридными цепями и представляет собой гликопротеины. В отличие от нерастворимых фибриллярных белков растворимые белки имеют почти сферическую (глобулярную) форму. Глобулярным белкам свойственна высокоупорядоченная пространственная структура (конформация), которая способствует выполнению специфических биологических функций (Албертс и соавт., 1994).
Подвижными в мембране являются не только липиды, но и мембранные белки. Если белки не закреплены в мембране, они «плавают» в липидном бислое как в жидкости. Поэтому говорят, что биомембраны имеют жидкостно-мозаичную структуру. При этом «дрейф» белков в плоскости мембраны происходит достаточно легко, переход их с внешней стороны мембраны на внутреннюю («флип-флоп») невозможен, а переход липидов происходит крайне редко. Для «перескока» липидов необходимы специальные белки транслокаторы. Исключение составляет жир холестерин, который может легко переходить с одной стороны мембраны на другую. Интегральные мембранные белки имеют трансмембранные спирализованные участки (домены), которые однократно или многократно пересекают липидный бислой. Такие белки прочно связаны с липидным окружением. Периферические мембранные белки удерживаются на мембране с помощью липидного «якоря» и связаны с другими компонентами мембраны; например, они часто бывают ассоциированы с интегральными мембранными белками. У интегральных мембранных белков фрагмент пептидной цепи, пересекающий липидный бислой, обычно состоит из 21–25 преимущественно гидрофобных аминокислот, которые образуют правую трансмембранную α-спираль с 6 или 7 витками (Фалер, Шилдс, 2004).
Мембрана бактерий
Оболочка прокариотической клетки грамотрицательных бактерий состоит из нескольких слоёв, показанных на рисунке ниже.
Слои оболочки грамотрицательных бактерий:
1. Внутренняя трёхслойная цитоплазматическая мембрана, которая соприкасается с цитоплазмой.
2. Клеточная стенка, которая состоит из муреина.
3. Наружная трёхслойная цитоплазматическая мембрана, которая имеет такую же систему липидов с белковыми комплексами, как и внутренняя мембрана.
Общение грамотрицательных бактериальных клеток с внешним миром через такую сложную трёхступенчатую структуру не даёт им преимущества в выживании в суровых условиях по сравнению с грамположительным бактериями, имеющими менее мощную оболочку. Они точно так же плохо переносят высокие температуры, повышенную кислотность и перепады давления.
Рис. Сложная тройная клеточная оболочка грамотрицательных бактерий. Источник изображения: https://probakterii.ru/prokaryotes/organelles/membrana-bakterij.html
Рис. Domain-length scales and the biomembrane as a protein–lipid composite material. (a) Length scales of domains in biomembranes. Shells, complexes and nanoclusters range from 1–10 nm, whereas nanodomains such as caveolae can be as large as 100 nm. (b) A schematic representation of the biomembrane as a composite of lipids and proteins. Estimates of lateral protein concentration are about 30,000 per μm2 based on rhodopsin in the rod outer segment28,29 and transmembrane proteins in the baby hamster kidney (BHK) cell membrane27. Lipids were assumed to occupy a surface area of ∼0.68 nm2 (diameter ∼0.93 nm) and an α-helix ∼1 nm2 (diameter ∼1.1 nm). A 30 × 30 nm2 section of membrane is depicted with 32 lipids on a side, 35 transmembrane proteins with 15 single-span, 12 tetraspan and eight heptaspan α-helical proteins, having assumed crosssectional areas in the plane of the membrane of 1 nm2, 4.5 nm2 and 8 nm2, respectively. Taking into account the area excluded by the proteins, the numerical lipid : protein ratio is ∼50. For a single-span helix with a diameter of ∼1.1 nm, there are about seven lipids in the first boundary layer; for a tetraspan protein with a diameter of ∼2.4 nm, there are about 11 lipids in the first boundary layer; for a heptaspan protein (such as rhodopsin) with a diameter of ∼3.2 nm, there would be about 14 lipids in the first boundary layer. Such first-boundary layer lipids are shown in white, whereas the second layer is shown in red. All other lipids are shown in yellow. Lipid-binding proteins and adaptors linking transmembrane proteins to membrane proximate cytoskeletal filaments are also depicted as different coloured structures beneath the plane of the membrane, but ectodomains of the membrane proteins are omitted for clarity. Источник изображения: https://www.nature.com/articles/ncb0107-7
Видеолекция: Плазматическая мембрана. Е.В. Шеваль, к.б.н.
Видеолекция: Мембрана как клеточная граница. А. Иляскин
Важность ионных каналов мембраны
Вообще, встроенные в мембрану белки ещё называются интегральными, именно потому что они как бы включаются в состав мембраны и пронизывают её насквозь. Другие белки, не интегральные, образуют как бы острова, «плавающие» по поверхности мембраны: либо по её наружной поверхности, либо по внутренней. Ведь всем известно, что жир является хорошей смазкой и скользить по нему получается легко!
Выводы
1. В целом, мембрана получается трёхслойной:
1) наружный слой из белковых «островов»,
2) жировое двухслойное «море» (липидный бислой), т.е. двойная липидная плёнка,
3) внутренний слой из белковых «островов».
2. В мембрану встроены специальные белковые структуры, обеспечивающие её протицаемость для ионов или других веществ. Не надо забывать, что в некоторых местах жировое море пронизано интегральными белками насквозь. И именно интегральные белки образуют специальные транспортные структуры клеточной мембраны (смотрите раздел 1_2 Транспортные механизмы мембраны). Через них вещества попадают внутрь клетки, а также выводятся из клетки наружу.
3. С любой стороны мембраны (наружной и внутренней), а также внутри мембраны могут располагаться белки-ферменты, которые влияют и на состояние самой мембраны и на жизнь всей клетки.
В медицине мембранные белки зачастую используются как “мишени” для лекарственных средств. В качестве таких мишеней выступают рецепторы, ионные каналы, ферменты, транспортные системы. В последнее время кроме мембраны мишенью для лекарственных веществ становятся также гены, спрятанные в клеточном ядре.
Видео: Введение в биофизику клеточной мембраны: Структура мембран 1 (Владимиров Ю.А.)
Видео: История, строение и функции клеточной мембраны: Структура мембран 2 (Владимиров Ю.А.)