Что значит уединить корень
Уединение радикала (корня)
Эта статья про уединение радикала или, как его еще называют, уединение корня. Здесь мы разъясним, что понимают под уединением радикала, что понимают под уединением произведения и дроби с радикалом, приведем примеры и укажем основную сферу применения.
Определение
Словосочетания «уединение радикала» и «уединение корня» фигурируют в школьных учебниках по алгебре, например, [1, c. 194-195; 2, с. 240]. Но там сильно не разъясняется, что понимается под уединением радикала. Однако, приведенной в учебниках информации достаточно для формирования представления о предмете нашего разговора. Для себя можно принять следующее:
Обычно уединения радикала добиваются последовательным выполнением некоторых основных преобразований уравнения, например, переносом слагаемых из одной части уравнения в другую.
Примеры
Приведем пару примеров уединения радикала (корня).
Если из левой части уравнения перенести все слагаемые, кроме корня, в правую часть, естественно, изменив их знаки на противоположные, то мы получим уравнение с уединенным радикалом:
.
Рассмотрим еще одно уравнение . В его записи три корня, каждый из которых можно уединить. Уединим первый радикал. Для этого оставляем его в левой части, а два других корня переносим в правую часть с противоположными знаками:
. Аналогично можно было уединить второй радикал, вместо первого: для этого нужно было оставить в левой части только нужный нам радикал вместе с его знаком
, а дальше избавиться от минуса перед ним, выполнив умножение обеих частей уравнения на минус единицу, что дало бы уравнение
. А можно было провести уединение третьего радикала. Для этого нужно было оставить слева третий корень и отправить два оставшихся корня в правую часть:
.
Уединение произведения или дроби с радикалом
На практике бывает полезно уединять не корень, а произведение, одним или несколькими множителями которого являются корни, или дробь, в числителе и/или знаменателе которой присутствуют корни. То есть, можно говорить не только об уединении радикала, но и об уединении произведения радикалов, в том числе и с числовым коэффициентом, про уединение дроби с корнем в числителе и/или знаменателе и т.п.
Обычно уединение перечисленных математических объектов достигается переносом слагаемых в другую часть уравнения. Приведем несколько примеров.
Вот пример уединения произведения корней с числовым коэффициентом: от уравнения переходим к уравнению
. А в уравнении
можно уединить дробь с корнем и перейти к уравнению
.
Где применяется уединение радикала
Осталось разобраться с главным: понять, для чего нужно уединение радикала, уединение произведений и дробей с радикалами. В основном уединение радикала используется при решении иррациональных уравнений. Оно позволяет подготовить уравнение к дальнейшему возведению его обеих частей в одну и ту же натуральную степень, что в дальнейшем позволяет избавиться от знаков корней и тем самым перейти к решению сравнительно простого уравнения. В этом и состоит суть уединения радикала.
Иррациональное уравнение: учимся решать методом уединения корня
— это любое уравнение, содержащее функцию под знаком корня. Например:
Такие уравнения всегда решаются в 3 шага:
Решение иррационального уравнения
Разберемся с нашим иррациональным уравнением, данным в самом начале урока. Тут корень уже уединен: слева от знака равенства нет ничего, кроме корня. Возводим обе стороны в квадрат:
2 x 2 − 14 x + 13 = (5 − x ) 2
2 x 2 − 14 x + 13 = 25 − 10 x + x 2
x 2 − 4 x − 12 = 0
Решаем полученное квадратное уравнение через дискриминант:
D = b 2 − 4 ac = (−4) 2 − 4 · 1 · (−12) = 16 + 48 = 64
x 1 = 6; x 2 = −2
Осталось лишь подставить эти числа в исходное уравнение, т.е. выполнить проверку. Но и тут можно поступить грамотно, чтобы упростить итоговое решение.
Как упростить решение
Давайте подумаем: зачем вообще мы выполняем проверку в конце решения иррационального уравнения? Мы хотим убедиться, что при подстановке наших корней справа от знака равенства будет стоять неотрицательное число. Ведь мы уже точно знаем, что слева стоит именно неотрицательное число, потому что арифметический квадратный корень (из-за которого наше уравнение и носит название иррационального) по определению не может быть меньше нуля.
Подставляем наши корни в эту функцию и получаем:
g ( x 1) = g (6) = 5 − 6 = −1 g ( x 2) = g (−2) = 5 − (−2) = 5 + 2 = 7 > 0
Из полученных значений следует, что корень x 1 = 6 нас не устраивает, поскольку при подстановке в правую часть исходного уравнения мы получаем отрицательное число. А вот корень x 2 = −2 нам вполне подходит, потому что:
Вот и весь алгоритм! Как видите, решать уравнения с радикалами не так уж и сложно. Главное — не забывать проверять полученные корни, иначе очень велика вероятность получить лишние ответы.
Что значит уединить корень
Сегодняшний наш урок будет посвящен изучению уравнений, у которых переменная стоит под знаком квадратного или другого корня. Мы с вами попробуем на примерах уравнений подробно разобраться и научиться правильно решать иррациональные уравнения.
Естественно, в первую очередь нам необходимо выяснить, какие же уравнения являются иррациональными. Давайте для начала озвучим определение такого уравнения.
Уравнения называются иррациональными, если их переменная стоит под знаком корня.
А теперь давайте приведем примеры иррациональных уравнений и посмотрим, как они выглядят:
Как решаются иррациональные уравнения
Как правило, все иррациональные уравнения решаются в три этапа:
• Во-первых, для начала необходимо уединить корень. Что это значит? То есть, если мы видим, что слева от знака равенства кроме корня есть еще и другие функции или числа, то в этом случае нам необходимо все это перенести вправо и поменять знак. Что же касается левой стороны, то здесь должен остаться лишь радикал и без всяких коэффициентов.
• Во-вторых, нам необходимо возвести в квадрат обе части этого уравнения. Но здесь не мешало бы быть внимательными и помнить, что к области значения корня относятся все неотрицательные числа. Из этого следует, что в иррациональном уравнении функция, которая расположена справа, также должна быть неотрицательной: g(x) ≥ 0.
• В-третьих, и это будет логично, необходимо выполнить проверку. А такая необходимость может возникнуть потому, что на втором этапе при решении уравнения у нас могли появиться лишние корни. А чтобы от этих корней избавиться, нам нужно полученные числа-кандидаты взять и подставить в исходное уравнение. Ну, а потом, естественно, нужно проверить, получилось ли на самом деле верное числовое равенство.
Решение иррационального уравнения
А теперь, на приведенном примере, который был дан вначале нашего урока, попробуем разобраться с таким иррациональным уравнением.
Посмотрев на это уравнение, мы видим, что в нем корень уже уединен, так как слева от знака равенства, кроме корня мы больше ничего не наблюдаем.
Теперь давайте возведем обе стороны этого уравнения в квадрат и смотрим, что в итоге у нас получится:
2×2 − 14x + 13 = (5 − x)2
2×2 − 14x + 13 = 25 − 10x + x2
x2 − 4x − 12 = 0
Теперь, через дискриминант попробуем решить квадратное уравнение, которое у нас получилось:
D = b2 − 4ac = (−4)2 − 4 • 1 • (−12) = 16 + 48 = 64;
x1 = 6; x2 = −2
Вот мы с вами решили уравнение и теперь нам нужно всего лишь в исходное уравнение подставить полученные числа и таким образом выполнить его проверку.
Конечно же, можно поступить, еще более обдумано и итоговое решение, взять и упростить.
Как упростить решение?
А теперь давайте попробуем ответить на вопрос, зачем нам необходимо в конце решения иррационального уравнения делать проверку? На этот вопрос, естественно вы ответите, что проверка необходима для того, чтобы мы могли быть уверены в том, что при выполнении подстановки наших корней с правой стороны от знака равенства, стоит неотрицательное число.
Но ведь, нам и так известно, что в иррациональном уравнении арифметический квадратный корень уже по определению не может быть меньше нуля, поэтому число отрицательным также быть не может.
Тогда возникает вопрос, что же, по сути, нам необходимо проверить? А все очень просто, нам нужно быть уверенными, что функция, которая стоит справа от знака равенства:
g(x) = 5 − x, была, естественно, неотрицательной:
С этим мы выяснили, теперь давайте подставим наши корни в эту функцию и получим такой результат:
g(x1) = g(6) = 5 − 6 = −1 0
И к какому мы выводу пришли? Подставив корни в функцию, мы видим, что корень x1 = 6 нам совершенно не подходит, так как, подставив его в правую часть исходного уравнения, у нас вышло отрицательное число. Тогда, когда корень x2 = −2 нас вполне устраивает, так как:
• Во-первых, потому, что этот корень и есть решением квадратного уравнения, так как был получен при помощи возведения в квадрат обеих сторон иррационального уравнения.
• Во-вторых, потому, что при подстановке корня x2 = −2, в итоге, правая сторона исходного иррационального уравнения имеет положительное число. А так как это число положительно, то значит, что и область значений арифметического корня не нарушена.
Вот мы с вами и решили алгоритм. Теперь вы видите, что, оказывается, решать уравнения с радикалами, не представляет никакой сложности. При решении таких уравнений во избежание вероятности получения лишних ответов, главное никогда не забывать делать проверку полученных корней.
Исторические факты о иррациональных величинах
А известно ли вам, что в переводе с латыни такое слово, как «иррациональный» звучит, как «неразумный». Но еще интересен тот факт, что параллельно с термином «неразумный» или «иррациональный» математики средневековья иррациональные числа еще нарекали термином «surdus», что в переводе звучало, как «глухой» и «немой». Складывается такое впечатление, что ученые не сильно жаловали иррациональные числа, считая их чем-то «неразумным», что нельзя ни высказать, ни выслушать.
Но, если поначалу математики Древнего мира практически отказывались воспринимать иррациональные числа, то со временем начали проявлять пристальное внимание к таким объектам математики.
А знаете ли вы, что в период бурного развития математических наук и астрономии математики Индии, Ближнего и Среднего Востока, длительное время отвергали иррациональные числа, хотя практически не могли обходиться без иррациональных величин.
А знаете ли вы, откуда появилось такое современное обозначение квадратного корня? Оказывается, начиная с тринадцатого века, длились эволюционные изменения знака радикала. Впервые название квадратному корню дали итальянские математики от латинского слова Radix, что в переводе обозначало корень, а его сокращенным вариантом была буква R.
Домашнее задание
Изучив тему иррациональных уравнений, выполните домашнее задание, решив данные уравнения, и дайте ответы на поставленные вопросы.
1. Решите данное уравнение:
Ответьте на вопросы:
• Как вы думаете, будет ли это уравнение иррациональным?
• Какой у этого уравнения показатель корня? Он будет отрицательным или неотрицательным?
• Какая в этом случае будет формула?
• Как вы будете решать это уравнение?
2. Решите данные уравнения и скажите, какие из них являются иррациональными?
3. Решите уравнение:
Дайте ответы на поставленные вопросы:
• Какое перед вами уравнение и является ли оно иррациональным?
• Какой показатель корня у этого уравнения?
• Как бы вы решали это уравнение?
• Сколько вы получили корней при решении этого уравнения?
• Нужна ли проверка этого уравнения?
• Каким методом можно воспользоваться, чтобы перейти от иррационального уравнения к рациональному?
• Существует ли вероятность появления постороннего корня в этом уравнении?
• Почему необходимо делать проверку корня?
• В каких случаях, при решении иррациональных уравнений проверка корней не требуется?
Алгебра
А Вы уже инвестируете?
Слышали про акцию в подарок?
Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб
План урока:
Иррациональные уравнения
Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.
Приведем примеры иррациональных ур-ний:
Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести
Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.
Простейшие иррациональные уравнения
Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:
где а – некоторое число (константа), f(x) – рациональное выражение.
Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:
Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии
n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.
Пример. Решите ур-ние
Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:
Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).
Пример. Найдите решение ур-ния
Решение. Возведем обе части в пятую степень:
Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:
D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324
Итак, нашли два корня: (– 2) и 16.
Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.
Пример. Решите ур-ние
Решение. Возводим обе части во вторую степень:
D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9
Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):
при х = 3 х – 4 = 3 – 4 = – 1
при х = 6 6 – 4 = 6 – 4 = 2
Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.
Пример. Решите ур-ние
Решение. Здесь используется кубический корень, а потому возведем обе части в куб:
3х 2 + 6х – 25 = (1 – х) 3
3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3
Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:
Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.
Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:
при х = 2 1 – х = 1 – 2 = – 1
Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:
Уравнения с двумя квадратными корнями
Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.
Пример. Решите ур-ние
Решение. Перенесем вправо один из корней:
Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:
Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:
Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:
4х 2 – 16х + 16 = 13 – 3х
D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121
Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:
Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3
На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.
Введение новых переменных
Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние
Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.
Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:
х 1/2 – 10х 1/4 + 9 = 0
Это квадратное ур-ние. Найдем его корни:
D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64
Получили два значения t. Произведем обратную замену:
х 1/4 = 1 или х 1/4 = 9
Возведем оба ур-ния в четвертую степень:
(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4
Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:
В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.
Пример. Решите ур-ние
х 1/3 + 5х 1/6 – 24 = 0
Его корни вычислим через дискриминант:
D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121
Далее проводим обратную заменуx 1/6 = t:
х 1/6 = – 8 или х 1/6 = 3
Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.
Замена иррационального уравнения системой
Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.
Пример. Решите ур-ние
Решение. Заменим первый корень буквой u, а второй – буквой v:
Исходное ур-ние примет вид
Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:
Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:
Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:
(х + 6) + (11 – х) = u 3 + v 2
из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:
17 = u 3 + u 2 – 10u + 25
u 3 + u 2 – 10u + 8 = 0
Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа
подставим полученные значения в (4):
x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3
x + 6 = 1 или х + 6 = 8 или х + 6 = – 64
х = – 5 или х = 2 или х = – 70
Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим
Корень подошел. Проверяем следующее число, х = 2:
Корень снова оказался верным. Осталась последняя проверка, для х = – 70:
Итак, все три числа прошли проверку.
Уравнения с «вложенными» радикалами
Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:
При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:
Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:
Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:
Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:
Возводим в квадрат и получаем:
х 2 + 40 = х 2 + 8х + 16
И снова нелишней будет проверка полученного корня:
Иррациональные неравенства
По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:
Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.
Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида
Может быть справедливым только тогда, когда
То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во
при четном n можно заменить системой нер-в
Пример. При каких значениях x справедливо нер-во
Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:
х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)
Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во
чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.
Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.
Пример. Найдите решение нер-ва
Решение. Всё очень просто – надо всего лишь возвести обе части в куб:
x 2 – 7x– 8 2 – 7x– 8 = 0
D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81
Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:
Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.
Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.
Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид
Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.
Пример. Решите нер-во
Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):
И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:
D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9
Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.
стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:
f(x) > 0 (подкоренное выражение не может быть отрицательным);
g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).
Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.
Пример. Решите нер-во
Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим
Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:
Во-вторых, выражение 4 – х не может быть отрицательным:
Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):
Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:
Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:
Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:
Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:
Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).
Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3