Что значит составить подмножество

Множества,их элементы,поджмножества

Вы будете перенаправлены на Автор24

В математике совокупности объектов, объединяющие ряд объектов называют множество. Данное понятие является первичным, значит, к более простым понятиям оно не сводится.

Термин множество употребляется тогда, когда речь идет о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек на координатной прямой, о множестве прямых, проходящих через точку.

Виды множеств

Множества могут быть конечными и бесконечными, пустыми.

Конечным называют множество, состоящее из конечного числа элементов, но при этом конечное множество может иметь любое количество элементов.

Среди конечных множеств выделяют множество, не имеющее ни одного элемента. Такое множество называется пустым множеством.

Множество, не являющееся конечным, называют бесконечным множеством.

Подмножества

Если некоторое множество не является пустым, то из него можно выделить другие множества, которые будут являться его частями.

Например, из множества натуральных чисел можно выделить множество четных.

Обозначение множеств, подмножеств и их элементов

Готовые работы на аналогичную тему

\[38\notin А, 74\notin А,934\notin А ; 12\in A,\ <\rm :\ >54\in A.\]

Способы задания множеств

Существует два глобально различных способа задания множеств.

Первый заключается в том, что множество задается указанием всех его элементов. В таком случае говорят, что множество задано перечислением всех своих элементов или списком своих элементов. Перечислением элементов можно задать только конечные множества и при небольшом количестве элементов, входящих в него

При таком способе задания множеств говорят, что множество задано перечислением его элементов.

Равенство множеств

Множества равны в том случае, если равны их элементы. При этом если множества состоят из одних и тех же элементов, но записанных в разном порядке то эти множества различны, хотя и равны.

Например, рассмотрим множества

Эти множества будут, состоят из равных элементов, значит, они будут равны, но при этом элементы расположены в разном порядке, т.е. множества различны

Пересечение множеств

Если даны два множества, то можно образовать новое множество, составленное из общих элементов этих множеств.

Например, рассмотрим два множества:

Объединение множеств

Математически это можно обозначить так:$\ А\ \cup B$

Разность множеств

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 27 05 2021

Источник

Множество и его элементы. Подмножества

Понятие множества

Что такое «множество», мы понимаем интуитивно. В этом смысле это понятие первично, так же как «точка» или «плоскость».

Создатель теории множеств Г.Кантор описывал множество как «многое, мыслимое нами как единое».

Приведём примеры множеств:

Множество людей в салоне самолёта

Множество деревьев в парке

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Множество планет Солнечной системы

Множество электронов в атоме

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Множество натуральных чисел

Множество «синих-синих презелёных красных шаров»

Конечное, бесконечное и пустое множества

Людей в салоне самолёта легко посчитать, это множество конечно.

С деревьями в парке, планетами и электронами – сложней. Скорее всего, мы не сможем назвать точное количество элементов этих множеств в данный момент времени. Однако, и эти множества конечны.

Натуральное число – это идеальный объект, абстракция. Множество натуральных чисел бесконечно. Как оказалось, человек может оперировать и абстракциями, и бесконечностями.

Можно себе представить даже то, «чего на свете вообще не может быть». Поскольку таких объектов нет, их множество будет пустым. Пустое множество является частью любого другого множества.

Помидоры на грядке

Числа (натуральные, рациональные, действительные и т.д.)

Количество рациональных чисел на отрезке [0;1]

Полосатые летающие слоны

Все точки пересечения двух параллельных прямых на плоскости

Способы задания множеств

1) Перечисление – в списке задаются все элементы множества.

Множество всех континентов Земли:

Множество букв слова «математика»:

Множество натуральных чисел меньших 5:

2) Характеристическое свойство – указывается особенность элементов множества.

D = – множество всех материков планеты Земля

3) Графическое изображение – визуальное моделирование с помощью различных диаграмм (круги Эйлера, интервалы, графики и т.п.)

Подмножества

Говорят, что B содержит A, или B покрывает A.

Пустое множество является подмножеством любого множества.

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Множество людей является подмножеством приматов, живущих на Земле.

Множество квадратов является подмножеством прямоугольников.

Множество всех подмножеств данного множества A называют булеаном или степенью множества A.

Примеры

Пример 1. Запишите данное множество с помощью перечисления элементов:

Задано множество целых чисел, квадрат которых меньше 5. Перечисляем:

Задано множество целых чисел, модуль которых не больше 3. Перечисляем:

Задано множество рациональных чисел, являющихся корнями уравнения

(x-1)(2x+5) = 0. Перечисляем:

Пример 2. Запишите данное множество с помощью характеристического свойства:

а) Множество всех натуральных чисел меньше 10

б) Множество всех действительных чисел, кроме 0

в) Множество всех точек с целыми координатами, принадлежащих прямой y = 2x+1

Пример 3. Изобразите на графике в координатной плоскости данное множество:

Задано конечное множество точек, которое можно представить перечислением:

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

Пример 4. Укажите и запишите с помощью перечисления одно из непустых конечных подмножеств для данного множества:

Источник

6.1.6. Множество и его элементы

I. Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).

Для записи множества используют фигурные скобки: « <»- множество открывается; «>» — множество закрывается. А само множество называют заглавными латинскими буквами: А, В, С и так далее.

Примеры.

1. Записать множество А, состоящее из всех гласных букв в слове «математика».

Решение. А=<а, е, и>. Вы видите: несмотря на то,что в слове «математика» имеется три буквы «а» — в записи множества повторений не допускается, и буква «а» записывается только один раз. Множество А состоит из трех элементов.

2. Записать множество всех правильных дробей со знаменателем 5.

Решение. Вспоминаем: правильной называют обыкновенную дробь, у которой числитель меньше знаменателя. Обозначим через В искомое множество. Тогда:

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножествоМножество В состоит из четырех элементов.

II. Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø.

III. Множество В называют подмножеством множества А, если все элементы множества В являются элементами множества А.

3. Какое из двух данных множеств В и С является подмножеством множества К,

Решение. Все элементы множества С являются также элементами множества К, поэтому, множество С является подмножеством множества К. Записывают:

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

IV. Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В.

4. Показать пересечение двух множеств М и F с помощью кругов Эйлера.

Решение.

Что значит составить подмножество. Смотреть фото Что значит составить подмножество. Смотреть картинку Что значит составить подмножество. Картинка про Что значит составить подмножество. Фото Что значит составить подмножество

V. Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В.

5. Показать с помощью кругов Эйлера объединение множеств Т и Р.

Источник

Калькулятор определения подмножества из множества

Подмножество множества A — это такой набор B, все члены которого принадлежат A. Существует знакомое всем с детства множество натуральных чисел N, а наборы четных E и нечетных O элементов являются подмножествами N.

Теория множеств

Проблема отображения бесконечности действительных чисел волновала математиков с самой древности. Натуральные числа люди использовали при счете, рациональные, то есть дроби – при операциях с частями целого, а действительные числа нашли свое применение в измерениях. Первым действительным и иррациональным числом, о котором узнали древние математики, было число, отображающее длину диагонали квадрата. Затем появилось Пи (отношение диаметра круга к его окружности), позднее и другие числа.

При измерении длины стороны фигуры или ее диагонали мы можем постоянно повышать точность измерений и получать все новые и новые числа. Например, диагональ единичного квадрата равна корню из двух. Мы можем выразить ее длину как 1,4 или 1,41 или 1,4142 или 1,41421356237. И это все разные действительные числа. Можно ли создать список всех действительных чисел от 0 до 1? Нет, так как каждый раз будет находиться еще одно число, отличное от всех, представленных в этом списке.

Именно с этой проблемой работал Георг Кантор, который создал наивную теорию множеств. Наивной его теория стала в результате образования нескольких логических парадоксов, которые были успешно решены при трансформации канторовской теории в аксиоматическую теорию множеств.

Подмножество

Давайте начнем с самого простого – множество натуральных чисел. Это бесконечная последовательность целых положительных чисел, которые мы используем при счете предметов. В отличие от измерений, мы не можем повышать точность счета. Если мы видим 5 яблок, то точнее мы выразить их количество никак не сможем. Кроме того, мы без проблем можем перечислить все натуральные числа в диапазоне от 1 до 10. Все натуральные числа могут быть как четными, так и нечетными, следовательно, натуральное множество содержит в себе четное и нечетное подмножества.

Целые числа – это продолжение натуральной последовательности в отрицательную область. К целым относится ноль, все натуральные числа, а также противоположные натуральным, то есть со знаком минус. Очевидно, что натуральное множество является подмножеством целых чисел.

Рациональное множество – это набор всех дробных чисел, которые возможно представить в виде обыкновенной дроби. В виде дроби мы можем выразить 0,25 – 1/4, 0,5 – 1/2, 1 – 1/1. В качестве дроби легко записать любое целое или натуральное число, например: 5/5 или 50/50. Таким образом, рациональное множество содержит два подмножества – наборы целых и натуральных чисел.

Действительное множество – это все числа на числовой оси. К ним относятся натуральные, целые, рациональные и иррациональные числа, которые формируют соответствующие подмножества во множестве действительных чисел. Множество действительных чисел – это самое мощное множество, которое стремится в бесконечность. Кроме того, пустое множество, которое не содержит ни одного элемента, является подмножеством любого выбранного набора чисел. Но и это еще не все. Каждое множество является подмножеством самого себя.

Мы перечислили глобальные примеры подмножеств, однако на практике нам может потребовать определить является ли один набор чисел подмножеством другого набора? К примеру, если у нас есть пара значений <3, 11>, то является ли она подмножеством набора <1, 3, 5, 7, 11, 13>? Очевидно, что ответ положительный, так как и 3, и 11 встречаются во множестве <1, 3, 5, 7, 11, 13>. Однако это верно только для множеств с неразличимыми элементами, то есть для обычного набора чисел. Если же важен порядковый номер элементов множества, то результат противоположный и <3, 11>не является подмножеством <1, 3, 5, 7, 11, 13>.

Наш калькулятор определения подмножеств позволяет выяснить, является набор чисел B подмножеством набора A. Программа использует алгоритм для надежно различимых элементов множества, для которых важен порядок расположения членов.

Пример определения подмножества

Выше мы выяснили, что четное множество – это подмножество натурального ряда. Для неразличимых элементов объект B = <2, 4, 6>является подмножеством набора A = <1, 2, 3, 4, 5, 6>. Однако представим, что это база данных, и n-ному элементу множества соответствует свое значение. Выходит, что первый член объекта B имеет значение 2, а первый элемент набора A равен 1. Второй элемент множества B равен 4, а второй элемент объекта A = 2. По такой логике это совершенно разные объекты, следовательно, множество B не является подмножеством набора A.

Заключение

Множество – это набор математических объектов, каждый из которых обладает определенным свойством. Каждое множество имеет минимум два подмножества: пустое и свое собственное. Для поиска других подмножеств используйте наш калькулятор, который позволяет определить принадлежность одного набора чисел к другому.

Источник

Понятие множества. Способы задания множеств.

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец «канторовскому раю». Одна из формулировок парадокса Рассела, известная под названием «парадокс брадобрея» звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, – а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей – вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали «наивной». Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая «аксиома выбора». Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

Простыми числами именуют такие натуральные числа большие 1, которые делятся лишь на 1 или на самое себя. Например, 2, 3, 5, 7 и так далее. Для сравнения: число 12 не является простым числом, так как оно делится не только на 12 и 1, а ещё и на иные числа (например, на 3). Число 12 является составным.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение – универсальное множество.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Используя понятие равенства множеств, можно классифицировать подмножества.

Примечание относительно терминологии: показать\скрыть

Вообще говоря, тут есть некая путаница в терминологии. Приведённое выше определение несобственных множеств принято в американской и части отечественной литературы. Однако в другой части отечественной литературы есть несколько иная трактовка понятия несобственных множеств.

Иными словами, пустое множество в такой трактовке исключается из собственных подмножеств и переходит в разряд несобственных. Выбор терминологии – дело вкуса.

Рассмотрим пару примеров на использование введённых выше понятий.

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

Ответ: Утверждения в пунктах №1, №2, №4 – истинны.

Булеан найден, остаётся лишь записать ответ.

Способы задания множеств.

Первый способ – это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$P(x)=»x\; – \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7″$$

$$P(27)=»27\; – \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7″$$

$$P\left(\frac<2><5>\right)=»\frac<2><5>\; – \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7″$$

Третий способ – задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Обычно при задании множества с помощью таких правил (которые часто называют рекурсивными или индуктивными) третий пункт подразумевается, но не оговаривается явно. Но нужно иметь его в виду.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *