Что значит сопряженное выражение
Иррациональность в знаменателе
Если дробь содержит корень в знаменателе, то мы говорим об иррациональности в знаменателе дроби. Часто бывает необходимо освободиться от иррациональности в знаменателе дроби. То есть заменить исходную дробь, содержащую иррациональность в знаменателе на тождественно равную ей дробь, которая иррациональность не содержит. Как это сделать?
Общее правило такое: нужно числитель и знаменатель дроби умножить на выражение, сопряженное знаменателю дроби.
Выражение А называется сопряженным иррациональному выражению В, если произведение АВ не содержит знака корня, то есть произведение АВ является рациональным числом.
Рассмотрим примеры сопряженных выражений.
1. Иррациональное выражение В содержит квадратный корень.
Возможны два случая:
a) . В этом случае
:
Например, чтобы исключить иррациональность из знаменателя в дроби , нужно числитель и знаменатель дроби умножить на
, получим
б) ,
=0;
b>=0, a<>b»/>
В этом случае сопряженным выражением будет дополняющее до разности квадратов:
Для выражения сопряженным будет
:
Соответственно, для выражения сопряженным будет
:
Например, исключим иррациональность из знаменателя дроби
Для этого умножим числитель и знаменатель дроби на выражение, сопряженное знаменателю, то есть на
Получим:
2. Иррациональное выражение В содержит корень n-й степени:
В этом случае сопряженное выражение :
Пример: исключим иррациональность из знаменателя дроби
Умножим числитель и знаменатель дроби на выражение . Получим:
3. Иррациональное выражение В является одним из множителей в разложении на множители разности или суммы кубов. В этом случае сопряженным ему выражением будет второй множитель:
Исключим иррациональность из знаменателя дроби:
Рассмотрим пример упрощения выражения, содержащего иррациональность в знаменателе дроби.
Найти значение выражения:
Внимание! Если нужно упростить выражение, содержащее иррациональность в знаменателе, то первым делом исключаем иррациональность из знаменателя, даже если кажется, что без этого можно обойтись.
Итак, исключим иррациональность из знаменателя первой и второй дроби:
Подставим полученные выражения в исходное:
Метод умножения числителя и знаменателя на сопряженное выражение
Продолжаем рассматривать неопределенность вида
Следующий тип пределов похож на предыдущий тип. Единственное, что помимо многочленов, у нас добавятся корни.
Найти предел
Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела.Данное действие обычно проводится мысленно или на черновике.
Получена неопределенность вида , которую нужно устранять.
Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по-возможности, избавляться. Зачем? А без них жизнь проще.
Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности используют метод умножения числителя и знаменателя на сопряженное выражение.
Вспоминаем нашу нетленную формулу разности квадратов:
И смотрим на наш предел:
Что можно сказать? у нас в числителе уже есть. Теперь для применения формулы осталось организовать
(которое в и называется сопряженным выражением).
Умножаем числитель на сопряженное выражение:
Обратите внимание, что под корнями при этой операции мы ничего не трогаем.
Хорошо, мы организовали, но выражение-то под знаком предела изменилось! А для того, чтобы оно не менялось, нужно его разделить на то же самое, т.е. на
:
То есть, мы умножили числитель и знаменатель на сопряженное выражение.
В известной степени, это искусственный прием.
Умножили. Теперь самое время применить вверху формулу :
Неопределенность не пропала (попробуйте подставить тройку), да и корни тоже не исчезли. Но с суммой корней всё значительно проще, ее можно превратить в постоянное число. Как это сделать? Да просто подставить тройку под корни:
Число, как уже отмечалось ранее, лучше вынести за значок предела.
Теперь осталось разложить числитель и знаменатель на множители, собственно, это следовало сделать раньше.
Как должно выглядеть решение данного примера в чистовом варианте?
Примерно так:
Умножим числитель и знаменатель на сопряженное выражение.
Найти предел
Сначала попробуйте решить его самостоятельно.
Окончательное решение примера может выглядеть так:
Разложим числитель на множители:
Умножим числитель и знаменатель на сопряженное выражение
Спасибо за внимание.
Помимо рассмотренных типов пределов на практике часто встречаются так называемые Замечательные пределы, с которыми Вы можете ознакомиться в соответствующей статье.
Как освободиться от иррациональности в знаменателе: способы, примеры, решения
При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.
Понятие освобождения от иррациональности в знаменателе
Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.
Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.
После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.
Основные действия для избавления от иррациональности в знаменателе дроби
Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.
Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.
Как преобразовать выражение в знаменателе дроби
Как мы уже говорили, проще всего выполнить преобразование знаменателя.
Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.
Решение
Запишем ход всего решения без комментариев:
1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16
Решение
Избавление от иррациональности методом умножения на корень
Решение
x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3
Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n ), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k ). После этого избавиться от иррациональности будет несложно. Разберем такой пример.
Решение
7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6
x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4
Избавление от иррациональности методом умножения на сопряженное выражение
Решение
Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:
Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.
Решение
x x + 4 = 16 16 + 4 = 16 4 + 4 = 2
Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
Решение
Последовательное применение различных способов преобразования
Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.
Решение
Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:
А теперь применим тот же способ еще раз:
Что значит сопряженное выражение
Иррациональными называют неравенства, в которых переменные входят под знаком корня. Так как корень чётной степени существует только у неотрицательных чисел, то при решении неравенств, содержащих такое выражение, прежде всего удобно найти ОДЗ.
Решите неравенство `sqrt(x + 3) > x + 1`.
Это неравенство можно решить несколькими способами. Решим его графически.
Рис. 1 |
Построим графики функций `y = sqrt(x + 3)`, `y = x + 1` и посмотрим, где первый график расположен выше второго. Для нахождения решения останется решить только уравнение `sqrt(x + 3) = x + 1` (и не надо рассматривать случаи разных знаков для `x + 1`!).
`[- 3; 1)`.
Сначала приведём уже выведенные в 10-ом классе условия равносильности для уравнений (в частности, для того, чтобы была понятна приведённая уже здесь нумерация условий равносильности для корней `(`УР К`)`):
ПУНКТ 1. НЕРАВЕНСТВА ВИДА `sqrt(f(x)) >= g(x)` и `sqrt(f(x))
1. Если `x` является решением неравенства `sqrt(f(x)) >= g(x)`, то `f(x) >= 0` и `sqrt(f(x))` существует. При этом неравенство заведомо выполнено при `g(x) = 0`, то возведение в квадрат обеих частей неравенства приводит к равносильному неравенству `f^2 (x) >= g^2 (x)`.
2. Пусть теперь `x` является решением совокупности неравенств
$$\left[\begin
б) если `g(x) >= 0` и
Можно ОДЗ неравенства найти отдельно, тогда условие равносильности примет вид:
Первый способ
Воспользуемся (УР К5):
`3sqrt(3x^2-8x-3)>1-2x iff`$$\left[\begin
Второй способ
Можно оформить решение неравенства и несколько по – другому. Найдём сначала ОДЗ:
`iff x in (- oo; (34-30sqrt2 )/(23)) uu ((34+30 sqrt2)/(23); + oo)`.
Заметим, что ОДЗ в этом случае выполнилось автоматически.
то `f(x) >= 0`, `g(x) >= 0`, `sqrt(f(x))` и `sqrt(g(x))` существуют.
Рассмотрим довольно часто встречающееся неравенство вида
Теперь используем эти свойства для решения довольно сложных неравенств вида
Сейчас мы покажем, что можно обойтись, хотя и двумя случаями, но без корней.
2. Если же `g(x) >= 0`, то разность может менять знак в зависимости от значений `x`, но сумма `sqrt(f(x)) + g(x)` всегда неотрицательна в ОДЗ, и умножение обеих частей неравенства на это сопряжённое выражение приводит к равносильному неравенству, т. е. в этом случае
Для неравенства другого знака меняется лишь знак неравенства. Объединив оба условия, получаем новое замечательное условие равносильности в ОДЗ:
Найденные в результате исследования совокупности (УР К9) решения следует сравнить с ОДЗ.
Решите неравенство `(4x+15-4x^2)/(sqrt(4x+15) +2x) >=0`.
Теперь в ОДЗ преобразуем неравенство:
Попробуем решить эту систему графически. Из графика на рисунке 2 видно, что неравенство выполнено от точки `x=-(15)/4` до абсциссы точки пересечения кривой `y=sqrt(4x+15)` и прямой `y=2x`.
Рис. 2 |
Найдём эту абсциссу:
Заметим, что для решения уравнения мы возводили обе части в квадрат, а, значит, одновременно с нашим решили «чужое» уравнение:
А в нашей системе решение этого уравнения `x=-3/2` как раз нам надо исключить. Главное в том, что для решения всей системы, оказалось достаточно решить единственное уравнение
Что значит сопряженное выражение
Читателю, вероятно, известны на первый взгляд трудные геометрические задачи, которые мгновенно решаются, если заменить одну данную точку другой, симметричной ей относительно прямой. Соображения симметрии очень важны и в алгебре.
В этой статье мы рассмотрим ряд ситуаций, в которых число вида полезно заменить сопряжённым Мы увидим, как этот простой приём замена знака перед радикалом помогает в решении разнообразных задач алгебры и анализа от нехитрых оценок и преобразований до трудных олимпиадных задач и замысловатых придумок составителей конкурсных экзаменов.
Большинство наших примеров может служить первым знакомством с глубокими математическими теориями мы указываем статьи и книги для продолжения знакомства). Среди задач, включённых в статью, две из Задачника «Кванта» и несколько из писем читателей, уже испытавших удовольствие от трюков с радикалами и желающих поделиться им с другими.
Пары сопряжённых чисел появляются вполне естественным образом, когда мы решаем квадратное уравнение, а корень из дискриминанта не извлекается: скажем, уравнение имеет пару «сопряжённых» корней:
К этому мы ещё вернёмся, а начнём с примеров другого рода: займёмся «перебросками».
Если в книжке указан ответ к задаче а у вас получилось не спешите искать ошибку в решении: ответ правильный эти числа равны, потому что
Вот несколько характерных примеров, где полезно перенести «иррациональность» из числителя в знаменатель или наоборот.
Эта сумма мгновенно «сворачивается», если переписать её так:
По выражению из статьи [1] «остаются крайние» (см. также [5]).
2. Доказать, что для любых натуральных m и n
Подобный факт мы использовали недавно при решении трудной задачи
В самом деле, всегда
поскольку число целое и отлично от 0 (равенство невозможно подумайте, почему!). Если бы выполнялось неравенство, противоположное (1), то должно было бы быть и
|