Что значит синтез атф в биологии
Коротко и простым языком про молекулы АТФ
Что оно такое – молекулы АТФ?!
В наших клетках происходят различные энергетические процессы: запасание и использование энергии, ее трансформация и высвобождение. Кажется невероятным, что какая-то абстрактная энергия вдруг может преобразовываться и создавать другие молекулы, выполняя при этом полезную работу для организма.
Для справки: АТФ (аденозинтрифосфат) – молекула, которая выполняет роль источника энергии для всех процессов в организме, в том числе, и для движения. Открыта эта молекула была в 1929 году. Главным источником для производства молекулы АТФ служит глюкоза.
По сути, молекула АТФ – это своеобразная молекулярная батарея, которая сохраняет энергию в те моменты, когда она не используется, и потом высвобождает энергию при необходимости организма.
Структура и формула энергетических молекул
При расщеплении молекулы АТФ происходит сокращение мышечного волокна, из-за чего выделяется энергия, позволяющая мышцам сокращаться.
Для того чтобы дать организму энергию АТФ проходит несколько этапов. В процессе каждого этапа вырабатывается большее количество энергии, но всегда то, которое затребовано самим организмом.
Главный источник для выработки АТФ — это глюкоза, которая расщепляется в клетках. Молекулы АТФ насыщают энергией длинные волокна мышечных тканей, которые содержат протеин — миозин. Именно так формируются мышечные клетки.
Когда наш организм отдыхает – цепочка процессов преображения молекулы АТФ идёт в обратную сторону. И в этих целях также задействована глюкоза. Созданные молекулы АТФ будут вновь использоваться, как только это станет необходимо организму.
Когда созданная молекулами энергия не нужна, она сохраняется в организме и высвобождается тогда, когда это потребуется.
Молекулы АТФ синтезируют три основные биохимические системы:
– Система гликогена и молочной кислоты
Что это дает нашему организму?!
Фосфагенная система – будет использоваться когда мышцы работают недолго, но очень интенсивно (порядка 10 секунд). Благодаря этой системе происходит постоянная циркуляция небольшого количества молекул АТФ в мышечных клетках. Такой энергии хватит на короткий забег или интенсивную силовую нагрузку в бодибилдинге.
Гликоген и молочная кислота — снабжают энергией организм медленнее, чем предыдущая система. Используется энергия АТФ, которой может хватить на полторы минуты интенсивной работы. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Именно благодаря этой системе можно пробежать 400 метров спринтерского бега или рассчитывать на более длительную интенсивную тренировку в зале. Но долгое время так работать не позволит ощущение боли в мышцах, которая появляется из-за переизбытка молочной кислоты.
Аэробное дыхание — эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать энергию молекул АТФ из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких сторонних противодействий — как препятствует молочная кислота в предыдущем анаэробном процессе.
Роль АТФ в организме
После описания синтеза трех биохимических систем становится понятно, что основная роль АТФ в организме — это обеспечение энергией всех многочисленных биохимических процессов и реакций организма.
То есть большинство энергозатратных процессов у живых существ происходит благодаря АТФ.
Но кроме этого молекула АТФ играет важную роль в синтезе нуклеиновых кислот, регулирует различные биохимические процессы, передает гормональные сигналы клеткам организма и другое.
Вместо выводов
Итак, АТФ – это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе, она даёт энергию для движения.
Важная роль АТФ в организме и жизни человека доказана не только учёными, но и многими спортсменами, бодибилдерами, фитнес-тренерами. Понимание важности этого вопроса помогает сделать тренировки более эффективными и правильно рассчитать свои физнагрузки.
Для всех, кто занимается силовыми тренировками в зале, фитнесом, бегом и другими видами спорта, нужно понимать и помнить – какие блоки упражнений необходимо выполнять в то или иное время тренировки. Благодаря этому можно откорректировать форму фигуры, проработать мышечную структуру, снизить лишний вес и добиться других улучшающих результатов для своего организма.
Синтез АТФ
Всего получено оценок: 19.
Всего получено оценок: 19.
АТФ — сокращённое название аденозинтрифосфорной кислоты. В химических связях этого вещества запасается энергия. Молекулы АТФ транспортируются в те части клетки и органы целостного организма, где усиленно расходуются энергетические запасы. Постоянный синтез АТФ обеспечивает потребности в энергии, необходимой для роста, развития и других процессов жизнедеятельности.
Состав и значение
Что такое АТФ? Вещество содержит аденозин — азотистое основание аденин (А), связанное с моносахаридом рибозой. Аденозин в АТФ удерживает 3 остатка фосфорной кислоты (Ф) — Н3РО4. Аденозинмонофосфорная кислота (АМФ) содержит 1 остаток фосфорной кислоты, аденозиндифосфорная кислота (АДФ) 2 остатка Н3РО4.
В результате происходящих в клетке реакций запасается много энергии (Е) между остатками фосфорной кислоты.
Связи между кислородом и фосфором в АТФ называют макроэргическими. В одной молекуле АТФ две такие связи. АТФ в реакциях отдает только одну молекулу Н3РО4 и превращается в АДФ. При отщеплении остатка фосфорной кислоты высвобождается около 30 кДж/моль энергии.
Синтез в хлоропластах
Рис. 1. Схема световой фазы фотосинтеза.
Окисленную форму НАДФ обозначают знаком «+», в восстановленной добавляют Н (водород). НАДФ является аккумулятором энергии для синтеза АТФ. Энергия возбуждённого электрона нужна для фосфорилирования АДФ и образования АТФ при участи АТФ-синтетазы. Присоединяется остаток фосфорной кислоты и образуется макроэргическая связь. Часть электронов используется для восстановления окисленной формы НАДФ.
Гликолиз
Всего в процессе бескислородного расщепления глюкозы (гликолиза) возникает 8 молекул АТФ.
АТФ образуется в бактериальных клетках, не содержащих хлорофилл. Первоначальным источником энергии служат химические реакции окисления неорганических веществ: сероводорода, аммиака, диоксида железа.
Синтез в митохондриях
Местом, где синтезируется АТФ, являются также митохондрии. Основная функция «энергетических станций» клетки — осуществление ферментативных реакций цикла Кребса и окислительное фосфорилирование. Кратко цикл Кребса можно описать так: исходный материал — пировиноградная кислота и молекулы ацетилкофермента А, возникающие при окислении глюкозы, жирных кислот и аминокислот. Энергию запасают молекулы НАД Н и ФАД Н2 (флавинадениндинуклеотид).
Рис. 3. Схема цикла Кребса.
Следующий этап — окислительное фосфорилирование (реакции с участием кислорода). Энергия, запасённая в молекулах НАД Н и ФАД Н2 в процессе гликолиза и цикла Кребса, используется для синтеза АТФ из АДФ. Всего при окислении одной молекулы глюкозы в присутствии кислорода выделяется энергия, которую запасают 38 молекул АТФ.
Что мы узнали?
Синтез АТФ – процесс, направленный на поддержание жизнедеятельности клетки, сопровождаемый образованием энергии. Образование АТФ происходит на внутренней мембране митохондрий, которые являются энергетическим аккумулятором клетки.
Расшифровка АТФ
Аденозинтрифосфорная кислота или АТФ – необходимое условие для существования 9 из 10 клеток с аэробным дыханием. Получение энергии происходит при фосфорилировании, присоединении остатка фосфорной кислоты. На одну молекулу АТФ приходится около 7,3 килокалории энергии.
Какие соединения входят в состав АТФ
Строение АТФ и биологическая роль тесно связаны. В состав АТФ входят аденозин, три остатка фосфорной кислоты. Связи, существующие между аминокислотой и фосфатом, подвергаются гидролизу в присутствии воды, в результате образуется АДФ (аденозиндифосфат), фосфорная кислота. Этот процесс происходит с высвобождением энергии.
Образование энергии
Процесс переноса электронов осуществляется посредством дыхательной цепи. Основную роль здесь играет восстановленный НАДН (Никотинамидадениндинуклеотид). Данное вещество окисляется, отдавая водород. Также на дыхательной цепи синтезируется АТФ. Фосфорилирование происходит на внутренней стороне мембраны митохондрии при помощи АТФ-синтазы.
Последняя выступает переносчиком ионов водорода, что необходимо в связи с существованием градиента на внутренней и внешней мембранах. Перенос водорода через мембрану – хемиосмос, ведет к возникновению связи между АДФ и остатком фосфорной кислоты, иначе говоря, к окислительному фосфорилированию.
Пути синтеза АТФ и его роль
Образование АТФ возможно в ходе гликолиза, цикла трикарбоновых кислот или цикла Кребса. Такие процессы носят название субстратного фосфорилирования.
В ходе первого получают четыре молекулы АТФ, две молекулы пирувата или пировиноградной кислоты из глюкозы. Это бескислородное расщепление. На обеспечение данного процесса затрачивается 2 АТФ, протекает он в цитоплазме или цитозоле. Цикл лимонной кислоты происходит на кристах (складки внутренней оболочки) митохондрий в ходе окисления пирувата. При этом происходит отщепление одного атома углерода с образованием ацетилкоэнзима А и восстановление НАДН.
Далее синтезируется лимонная кислота при участии щавелевоуксусной кислоты. Цитрат превращается в цис-аконитат, который переходит в изоцитрат. К последнему присоединяется окисленный НАДН, который восстанавливается. Отщепление водорода приводит к синтезу кетоглутарата, с ним снова соединяется окисленный НАДН и ацетилкоэнзим А. На этой стадии синтезируется сукцинил-коэнзим А, к которому присоединяется ГДФ (гуанозиндифосфат).
Данная молекула восстанавливается в ГТФ (гуанозинтрифосфат) плюс образуется сукцинат. Он превращается в фумарат, затем малат. В этой реакции синтезируется оксалоацетат и восстановленный НАДН. Так, цикл Кребса возвращается к цитрату. На каждый цикл затрачиваются 2 молекулы АТФ, синтезируется 6 НАДН в цикле и 4 на подготовительных этапах. Последняя энергетически приравнивается к трем молекулам АТФ.
В синтезе цитрата задействованы также два ФАДН2 (флавинадениндинуклеотид), на каждую приходится по две АТФ. Таким образом, синтезируемое количество АТФ соответствует 38 молекулам с позиций биологии и биохимии. Однако следует помнить, что это теоретическое число, необходимое для дыхания клетки. Все реакции цикла Кребса катализируются ферментами.
Главная роль – поддержание клеточного дыхания, направленного на рост клетки, синтез новых веществ.
Функции АТФ
Важнейшая функция – участие в энергетическом обмене. Энергия, выделяемая в ходе данных превращений, вновь идет на синтез АТФ. При этом 40% рассеивается в виде тепла.
Поскольку для поддержания любых процессов жизнедеятельности необходимы энергозатраты АТФ – аккумулятор клетки, универсальный источник запасов энергии. Гликолиз активно протекает при физической нагрузке, в мышцах. Субстратное фосфорилирование также осуществляется из креатинфосфата других органических веществ.
Важно подчеркнуть, что цикл Кребса протекает при расщеплении как углеводов, так и белков и жиров. Если в качестве «топлива» клетка использует не углевод, гликолиз не протекает (отсюда не происходит затрата двух молекул АТФ с образованием четырех). Но цикл трикарбоновых кислот протекает одинаково, так как главную роль там играет ацетил-коэнзим А. При кислородном голодании клетка перестраивается на гликолитический путь.
Заключение
Что значит синтез атф в биологии
Всего получено оценок: 1322.
Всего получено оценок: 1322.
В биологии АТФ – это источник энергии и основа жизни. Аденозинтрифосфорная кислота &ndash универсальный аккумулятор энергии во всех живых организмах.
Что это?
Понять, что такое АТФ, поможет химия. Химическая формула молекулы АТФ – C10H16N5O13P3. Запомнить полное название несложно, если разбить его на составные части. Аденозинтрифосфат или аденозинтрифосфорная кислота – нуклеотид, состоящий из трёх частей:
Более подробная расшифровка АТФ представлена в таблице.
Составные части
Формула
Описание
Производное пурина, входит в состав жизненно важных нуклеотидов. Не растворим в воде
Пятиуглеродный сахар, входящий в состав нуклеотидов, в том числе РНК
Неорганическая кислота, растворимая в воде
АТФ впервые обнаружили гарвардские биохимики Суббарао, Ломан, Фиске в 1929 году. В 1941 году немецкий биохимик Фриц Липман установил, что АТФ является источником энергии живого организма.
Образование энергии
Фосфатные группы соединены между собой высокоэргическими связями, которые легко разрушаются. При гидролизе (взаимодействии с водой) связи между двумя последними фосфатными группами распадаются, высвобождая большое количество энергии (от 40 до 60 кДж/моль), а АТФ превращается в АДФ (аденозиндифосфорную кислоту).
Условно химическая реакция выглядит следующим образом:
которые читают вместе с этой
АТФ + Н2О → АДФ + Н3РО4 + энергия
Рис. 2. Гидролиз АТФ.
Часть высвободившейся энергии участвует в анаболизме (ассимиляции, пластическом обмене), часть – рассеивается в виде тепла и используется для поддержания температуры тела. При дальнейшем гидролизе АДФ отщепляется ещё одна фосфатная группа с высвобождением энергии и образованием АМФ (аденозинмонофосфата). АМФ гидролизу не подвергается.
Синтез АТФ
АТФ располагается в цитоплазме, ядре, хлоропластах, в митохондриях. Синтез АТФ в животной клетке происходит в митохондриях, а в растительной – в митохондриях и хлоропластах.
АТФ образуется из АДФ и фосфата с затратой энергии. Такой процесс называется фосфорилированием:
АДФ + Н3РО4 + энергия → АТФ + Н2О
Рис. 3. Образование АТФ из АДФ.
В растительных клетках фосфорилирование происходит при фотосинтезе и называется фотофосфорилированием. У животных процесс протекает при дыхании и называется окислительным фосфорилированием.
В животных клетках синтез АТФ происходит в процессе катаболизма (диссимиляции, энергетического обмена) при расщеплении белков, жиров, углеводов.
Функции
Из определения АТФ понятно, что эта молекула способна давать энергию. Помимо энергетической аденозинтрифосфорная кислота выполняет другие функции:
Что мы узнали?
Из урока биологии 10 класса узнали о строении и функциях АТФ – аденозинтрифосфорной кислоты. АТФ состоит из аденина, рибозы и трёх остатков фосфорной кислоты. При гидролизе связи между остатками фосфорной кислоты разрушаются, что высвобождает энергию, необходимую для жизнедеятельности организмов.
Синтез АТФ — структура, функции и пути образования аденозинтрифосфорной кислоты
Синтез АТФ – процесс, направленный на поддержание жизнедеятельности клетки, сопровождаемый образованием энергии. Образование АТФ происходит на внутренней мембране митохондрий, которые являются энергетическим аккумулятором клетки.
Расшифровка АТФ
Аденозинтрифосфорная кислота или АТФ – необходимое условие для существования 9 из 10 клеток с аэробным дыханием. Получение энергии происходит при фосфорилировании, присоединении остатка фосфорной кислоты. На одну молекулу АТФ приходится около 7,3 килокалории энергии.
Какие соединения входят в состав АТФ
Строение АТФ и биологическая роль тесно связаны. В состав АТФ входят аденозин, три остатка фосфорной кислоты. Связи, существующие между аминокислотой и фосфатом, подвергаются гидролизу в присутствии воды, в результате образуется АДФ (аденозиндифосфат), фосфорная кислота. Этот процесс происходит с высвобождением энергии.
Энергообразование происходит за счет разрыва макроэргических связей АТФ (обозначаемых в формуле знаком тильда). Сам аденозин состоит из аденина – пуринового нуклеотида и рибозы. Первая участвует в синтезе ДНК, вторая — составляющая структуры РНК.
Образование энергии
Макроэргическая связь заключена между общими электронами остатков фосфорной кислоты (что и удерживает их вместе). Кислород и фосфор образуют общую электронную пару — высокоэнергетическую. Поэтому при отщеплении снижается энергия электронов: отщепляется фосфат и выделяется ее избыточное количество.
Процесс переноса электронов осуществляется посредством дыхательной цепи. Основную роль здесь играет восстановленный НАДН (Никотинамидадениндинуклеотид). Данное вещество окисляется, отдавая водород. Также на дыхательной цепи синтезируется АТФ. Фосфорилирование происходит на внутренней стороне мембраны митохондрии при помощи АТФ-синтазы.
Последняя выступает переносчиком ионов водорода, что необходимо в связи с существованием градиента на внутренней и внешней мембранах. Перенос водорода через мембрану – хемиосмос, ведет к возникновению связи между АДФ и остатком фосфорной кислоты, иначе говоря, к окислительному фосфорилированию.
Пути синтеза АТФ и его роль
Образование АТФ возможно в ходе гликолиза, цикла трикарбоновых кислот или цикла Кребса. Такие процессы носят название субстратного фосфорилирования.
В ходе первого получают четыре молекулы АТФ, две молекулы пирувата или пировиноградной кислоты из глюкозы. Это бескислородное расщепление. На обеспечение данного процесса затрачивается 2 АТФ, протекает он в цитоплазме или цитозоле. Цикл лимонной кислоты происходит на кристах (складки внутренней оболочки) митохондрий в ходе окисления пирувата. При этом происходит отщепление одного атома углерода с образованием ацетилкоэнзима А и восстановление НАДН.
Далее синтезируется лимонная кислота при участии щавелевоуксусной кислоты. Цитрат превращается в цис-аконитат, который переходит в изоцитрат. К последнему присоединяется окисленный НАДН, который восстанавливается. Отщепление водорода приводит к синтезу кетоглутарата, с ним снова соединяется окисленный НАДН и ацетилкоэнзим А. На этой стадии синтезируется сукцинил-коэнзим А, к которому присоединяется ГДФ (гуанозиндифосфат).
Данная молекула восстанавливается в ГТФ (гуанозинтрифосфат) плюс образуется сукцинат. Он превращается в фумарат, затем малат. В этой реакции синтезируется оксалоацетат и восстановленный НАДН. Так, цикл Кребса возвращается к цитрату. На каждый цикл затрачиваются 2 молекулы АТФ, синтезируется 6 НАДН в цикле и 4 на подготовительных этапах. Последняя энергетически приравнивается к трем молекулам АТФ.
В синтезе цитрата задействованы также два ФАДН2 (флавинадениндинуклеотид), на каждую приходится по две АТФ. Таким образом, синтезируемое количество АТФ соответствует 38 молекулам с позиций биологии и биохимии. Однако следует помнить, что это теоретическое число, необходимое для дыхания клетки. Все реакции цикла Кребса катализируются ферментами.
Главная роль – поддержание клеточного дыхания, направленного на рост клетки, синтез новых веществ.
Функции АТФ
Важнейшая функция – участие в энергетическом обмене. Энергия, выделяемая в ходе данных превращений, вновь идет на синтез АТФ. При этом 40% рассеивается в виде тепла.
Поскольку для поддержания любых процессов жизнедеятельности необходимы энергозатраты АТФ – аккумулятор клетки, универсальный источник запасов энергии. Гликолиз активно протекает при физической нагрузке, в мышцах. Субстратное фосфорилирование также осуществляется из креатинфосфата других органических веществ.
Важно подчеркнуть, что цикл Кребса протекает при расщеплении как углеводов, так и белков и жиров. Если в качестве «топлива» клетка использует не углевод, гликолиз не протекает (отсюда не происходит затрата двух молекул АТФ с образованием четырех). Но цикл трикарбоновых кислот протекает одинаково, так как главную роль там играет ацетил-коэнзим А. При кислородном голодании клетка перестраивается на гликолитический путь.
Заключение
АТФ — это особое соединение, содержащее связи, при гидролизе которых высвобождается огромное количество энергии. Называя синтезом АТФ процесс, выполняющий функцию поддержания жизнедеятельности клетки, нельзя не понять, каково значение этого явления. В действительности количество синтезируемого аденозинтрифосфата может быть меньше 38 молекул. Суть процесса заключается в синтезе макроэргических веществ, поступающих в дыхательную цепь переноса электронов.