Что значит результат измерения
РЕЗУЛЬТАТ ИЗМЕРЕНИЙ И ЕГО ХАРАКТЕРИСТИКИ
Понятие «результат измерений» также не имеет однозначного определения. Одни авторы считают, что результатом измерения является значение величины плюс оценка погрешности измерения, другие полагают, что результат измерения — это значение величины, найденное путем ее измерения. Последнее положение закреплено ГОСТ 16263-70. В международных словарях, толкования этого понятия близки друг другу и практически совпадают с определением, приведенным в ГОСТ 16263-70. Очевидно, при выборе определения данного понятия следует исходить из того, что на практике большинство измерений являются однократными, поэтому за их результат нередко принимается то значение величины, которое непосредственно снято с прибора, — без обработки и оценивания погрешности, так как в этом нет необходимости. Например, токарь, обрабатывая деталь, периодически, в целях контроля, выполняет однократные измерения какого-либо ее параметра при помощи штангенциркуля. На основании результатов этих измерений он принимает решение о дальнейшей обработке детали. Оператор в котельной, основываясь на показаниях манометра (в данном случае — это результаты измерений) и сравнивая их с заданными значениями давления, принимает решение о регулировании режима сгорания топлива. Из этого следует, что результатом измерения является именно значение величины, которое удалось получить при помощи того или иного средства измерений. Но это вовсе не означает, что погрешности результатов данного вида измерений неизвестны. Они регламентируются заранее (до выполнения измерений) выбором необходимых по точности средств измерений.
Примеры. Оператор снял показание щитового амперметра — 100 А, т. е. произвел отсчет. Этот отсчет и есть результат измерения R, т. е. R = отсчету.
При измерении длины отрезка I при помощи штрихового метра с микроскопами произведены два отсчета, соответствующие концам отрезка: О1 = 11,1 мм и О2 = 85,6 мм. Разность отсчетов О2 — О1 = 74,5 мм будет результатом измерения отрезка I, т. е. R = О2 — О1.
При измерении массы m вещества на весах выполнено пять равноточных измерений: m1, m2, m3, m4 и m5 соответственно равных 5,5; 5,6; 5,5; 5,4 и 5,5 мг. В этом случае за результат многократного измерения принимают среднее арифметическое из пяти значений: m = 5,5 мг, т. е.
(1.1)
При неравноточных измерениях результатом многократного измерения является среднее взвешенное. В таком случае,
(1.2)
где ai—значение величины, полученное из i-го измерения, входящего в ряд неравноточных измерений; pi — вес і-го измерения данного ряда (определение веса измерений приведено ниже).
Часто в полученный результат измерений вводят поправки. В итоге значение величины до и после введения поправки будет различным. Это должно найти отражение в терминологии.
Неисправленный результат измерения (кратко — неисправленный результат) — значение физической величины, полученное при помощи средства измерений до введения поправок.
Исправленный результат измерения (кратко — исправленный результат) — значение физической величины, полученное при помощи средства измерений и уточненное путем введения в него необходимых поправок.
Автоматические средства измерений высокой точности, сопряженные с ЭВМ, выполняют измерения и обработку данных. Результатом обработки данных является исправленное значение величины и оценка его погрешности. Что считать результатом измерений в данном случае? Казалось бы, те данные, которые выдает автоматическое средство измерений, и есть результат измерений (значение величины плюс оценка погрешности). Однако это не так. Автоматическое средство измерений одновременно выдает исправленный результат измерений и оценку погрешности результата измерений.
Сходимость результатов измерений (кратко — сходимость измерений) — характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях.
1. Количественную оценку сходимости измерений можно произвести по разностям полученных значений величины или отсчетов показаний. Сходимость измерений двух групп многократных измерений может характеризоваться размахом, средней квадратической или средней арифметической погрешностью.
2. Сходимость результатов измерений может быть также получена по результатам одновременно выполненных измерений одной и той же величины однотипными средствами измерений.
Воспроизводимость результатов измерений (кратко — воспроизводимость измерений) — характеристика качества измерений, отражающая близость друг другу результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям (температура, давление, влажность и др.).
Примечание. Воспроизводимость измерений может характеризоваться средней квадратической погрешностью сравниваемых групп измерений.
Точность результата измерений (кратко — точность измерений) — характеристика качества измерения, отражающая близость к нулю погрешности его результата (чем меньше погрешность измерения, тем выше его точность).
Правильность результата измерений (кратко — правильность измерений) — характеристика качества измерений, отражающая близость к нулю систематических погрешностей в их результатах.
Примечание. Стандартизованный термин «правильность измерений» в указанном значении не нашел широкого применения. Обычно применительно к конкретной измерительной задаче считают правильным тот результат измерения, погрешность которого не превышает установленного значения.
Среднее взвешенное значение (кратко — среднее взвешенное) — среднее значение величины, полученное на основании ряда неравноточных измерений с учетом весов отдельных результатов, принятых в обработку.
Вес результата измерений (кратко — вес измерений или вес, буквенное обозначение р) — положительное число, служащее оценкой доверия тому или иному отдельному результату измерения, входящему в ряд неравноточных измерений.
Измерительная информация (ИИ) — информация о значениях одной или нескольких физических величин.
1. Измерительная информация может быть представлена в различной форме (именованным числом, словами, в виде кода).
2. Кроме значения величины в ИИ могут включаться данные о погрешности измерений, числе, условиях измерений и другие данные.
Содержание:
При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с точностью до сантиметра, размеры дома, стадиона – с точностью до метра.
Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.
При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.
Пример:
Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).
Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением
шкалы линейки совпадает второй край стола (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.
Абсолютная погрешность измерения ∆ (ДЕЛЬТА)
Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.
Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.
Относительная погрешность измерения ε (ЭПСИЛОН)
Иногда важно знать, какую часть составляет наша погрешность от значения
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: . То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой (эпсилон):
(5.1)
Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения – плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.
Стандартная запись результата измерений и выводы
На точность измерения влияет много факторов, в частности:
Все это необходимо учитывать при проведении измерений.
Измерительные приборы
Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.
Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.
Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.
Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.
Как определяют единицы длины и времени
В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.
Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).
Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.
Можно ли расстояние измерять годами
Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!
Что надо знать об измерительных приборах
Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?
На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.
Цена деления — это значение наименьшего деления шкалы прибора.
Как определить цену деления шкалы? Для этого необходимо:
Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.
Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:
Цена деления шкалы мензурки 2:
А какими линейкой и мензуркой можно измерить точнее?
Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.
Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.
Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.
Главные выводы:
Для любознательных:
В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.
Пример решения задачи
Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.
Решение:
1) Цена деления нижней шкалы:
Цена деления средней шкалы:
Цена деления верхней шкалы:
2) Определенный но нижней шкале с точностью до 10° определенный по средней шкале с точностью до 5°
определенный по верхней шкале с точностью до 1°
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Измерение. Шкалы измерений
Известное изречение гласит «все познается в сравнении».
Для идентификации объектов и их характеристик во множестве их проявлений требуется большое количество и разнообразие мер. С учетом особенностей измеряемых объектов и задач измерений меры группируют и используют для построения шкал измерений.
Шкала измерений – упорядоченное множество проявлений количественных или качественных характеристик объектов, а также самих объектов. Указанное множество может быть образовано из наименований и обозначений (в том числе в цифровой форме) объектов и их характеристик, а также из значений и числовых значений (для количественных характеристик).
Согласно РМГ 83-2007 [7] «шкала измерений – отображение множества различных проявлений количественного или качественного свойства на принятое по соглашению упорядоченное множество чисел или другую систему логически связанных знаков (обозначений)». «Измерение – сравнение конкретного проявления измеряемого свойства (величины) со шкалой измерений этого свойства (величины) в целях получения результата измерений (оценки свойства или значения величины)».
Под качественной характеристикой в определении шкалы измерений и далее понимается описание объектов, их свойств и состояний, в словесной форме, в том числе с использованием наименований и обозначений.
Количественная характеристика – характеристика, которая может быть представлена числовым значением, равным отношению количественного содержания этой характеристики к еѐ базовой реализации, называемой единицей измерения.
Шкала наименований – шкала, состоящая из множества наименований (обозначений) объектов или проявлений их характеристик, в соответствии которым поставлено описание объекта (конкретная реализация объекта, его графическое изображение, математическая формула, график и т.п.) или проявлений его характеристик.
Наименование (обозначение) в этом случае рассматривают как обобщенную характеристику объекта или его свойств и состояний. С помощью шкалы наименований устанавливают эквивалентность (равноценность) измеряемого объекта или его характеристик и описания, поставленному в соответствие тому или иному наименованию (обозначению). Это позволяет отнести объект к какой-либо группе или выделить его, путем присвоения индивидуального наименования (обозначения), после чего наименования (обозначения) применяются как идентификаторы объектов (характеристик объектов). При построении шкал наименований могут использоваться числа, но лишь как метки объектов. Примерами таких шкал являются: атласы цветов (до 1000 наименований), запахов (сырой, затхлый, кислый и т.д.), вкуса (чистый, полный, гармоничный и т.д.); множество номеров телефонов, автомашин, паспортов; разделение людей по полу, расе, национальности; классификаторы промышленной продукции, специальностей высшего образования; терминологические справочники и т.п.
Числа, знаки, обозначения, наименования, составляющие шкалу наименований, разрешается менять местами. Для результатов измерений, полученных с использованием этой шкалы, нет отношений типа «больше — меньше», не применимы понятия единица измерения, нуль, размерность. С ними могут проводиться только некоторые математические операции. Например, числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.
Оценки экспертов часто осуществляются с использованием шкал порядка. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию.
В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше — меньше», «лучше — хуже» и т.п. Однако нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).
Шкалы наименований и порядка, для которых не определены единицы измерений, называют также условными шкалами или не метрическими шкалами.
Абсолютная шкала – шкала числовых значений количественной характеристики. Отличительные признаки абсолютных шкал: наличие естественного нуля и отсутствие необходимости в единице измерений. С использованием абсолютных шкал измеряют коэффициенты усиления, ослабления, амплитудной модуляции, нелинейных искажений, отражения, коэффициент полезного действия и т. п. Результаты измерений в абсолютных шкалах при необходимости выражают в процентах, промилле, байтах, битах, децибелах.
Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов, или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений (со специальным названием) в таких шкалах принимают какое-то определенное число частиц (квантов), например один моль – число частиц, равное числу Авогадро.
Абсолютная шкала, диапазон значений которой находится в пределах от нуля до единицы (или некоторого предельного значения по спецификации шкалы) называют абсолютной ограниченной шкалой.
Шкалы разностей (интервалов), отношений и абсолютные классифицируют как метрические или физические шкалы. Эти шкалы допускают логарифмическое преобразование, часто применяемое на практике, что приводит к изменению типа шкал. Такие шкалы называют логарифмическими. Практическое распространение получили логарифмические шкалы на основе применения систем десятичных и натуральных логарифмов, а также логарифмов с основанием два.
Практически реализация шкал измерений достигается путем стандартизации как самих шкал и единиц измерений, так и, при необходимости, способов и условий (спецификаций) их однозначного воспроизведения.
Измерение с помощью шкал заключается в установлении соответствия объекта или его характеристики отметке на шкале измерений. После чего объекту измерений приписывают количественную или качественную определенность, соответствующую выявленной отметке шкалы.
Измерение
Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).
Характеристикой точности измерения является его погрешность или неопределённость. Примеры измерений:
В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов.
Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.
Содержание
Классификация измерений
По видам измерений
Согласно РМГ 29-99 «Метрология. Основыне термины и определения» выделяют следующие виды измерений:
Также стоит отметить, что в различных источниках дополнительно выделяют таки виды измерений: метрологически и технические, необходимые и избыточные и др.
По методам измерений
По условиям, определяющим точность результата
По отношению к изменению измеряемой величины
Статические и динамические.
По результатам измерений
Классификация рядов измерений
По точности
По числу измерений
Классификация измеряемых величин
По точности
По результатам измерений
История
Единицы и системы измерения
См. также
Примечания
Литература и документация
Литература
Нормативно-техническая документация
Ссылки
Полезное
Смотреть что такое «Измерение» в других словарях:
ИЗМЕРЕНИЕ — представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… … Философская энциклопедия
Измерение X — Измерение Икс … Википедия
измерение — замер, обмер; вымеривание, установление, фиксирование, замеривание, распознавание, промер, диагностирование, смеривание, нахождение, обмеривание, определение Словарь русских синонимов. измерение см. установление 2 Словарь синонимов … Словарь синонимов
измерение — (в психологии) научный метод представления числами интересующего психического свойства или параметров психического процесса на основе нек рых процедурных правил. Совокупность теоретико математических представлений и процедурных правил,… … Большая психологическая энциклопедия
ИЗМЕРЕНИЕ — ИЗМЕРЕНИЕ, измерения, ср. 1. Действие по гл. измерить измерять. Измерение роста. 2. Измеряемая величина, протяжение (мат.). Куб имеет три измерения: длину, высоту и ширину. ❖ Четвертое измерение (ирон.) перен. сверхъестественная и бесплодно… … Толковый словарь Ушакова
ИЗМЕРЕНИЕ — последовательность эксперим. и вычислит. операций, осуществляемая с целью нахождения значения физ. величины, характеризующей нек рый объект или явление. И. завершается определением степени приближения найденного значения к истинному значению… … Физическая энциклопедия
ИЗМЕРЕНИЕ — ИЗМЕРЕНИЕ, действия, производимые с целью нахождения числовых значений какой либо величины в принятых единицах измерения. Измерение выполняют с помощью соответствующих средств измерения (линейка, часы, весы и т.д.). Различают прямые… … Современная энциклопедия
ИЗМЕРЕНИЕ — совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Различают прямые измерения (напр., измерение длины проградуированной линейкой) и косвенные… … Большой Энциклопедический словарь
измерение — Сравнение конкретного проявления измеряемого свойства (измеряемой величины) со шкалой (частью шкалы) измерений этого свойства (величины) с целью получения результата измерения (значения величины или оценки свойства). [МИ 2365 96] измерение… … Справочник технического переводчика
Измерение — ИЗМЕРЕНИЕ, действия, производимые с целью нахождения числовых значений какой либо величины в принятых единицах измерения. Измерение выполняют с помощью соответствующих средств измерения (линейка, часы, весы и т.д.). Различают прямые… … Иллюстрированный энциклопедический словарь