Что значит решить систему рациональных уравнений
Системы уравнений
Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.
Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.
Например, система уравнений может быть задана следующим образом.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы решить систему уравнений, нужно найти и « x », и « y ».
Как решить систему уравнений
Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.
Способ подстановки
или
«железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
x + 5y = 7 |
3x − 2y = 4 |
Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».
Чтобы выразить неизвестное, нужно выполнить два условия:
Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.
При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y |
3x − 2y = 4 |
Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.
x = 7 − 5y |
3(7 − 5y) − 2y = 4 |
Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.
x = 7 − 5y |
3(7 − 5y) − 2y = 4 (*) |
Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7 |
3x − 2y = 4 |
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.
x + 5y = 7 | (x + 5y) + (3x − 2y) = 7 + 4 |
+ => | x + 5y + 3x − 2y = 11 |
3x − 2y = 4 | 4x + 3y = 11 |
При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
x + 5y = 7 |
3x − 2y = 4 |
Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».
Для этого умножим первое уравнение на « −3 ».
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3) |
3x − 2y = 4 |
x · (−3) + 5y · (−3) = 7 · (−3) |
3x − 2y = 4 |
−3x −15y = −21 |
3x − 2y = 4 |
Теперь сложим уравнения.
−3x −15y = −21 | (−3x −15y ) + (3x − 2y) = −21 + 4 |
+ => | − 3x − 15y + 3x − 2y = −21 + 4 |
3x − 2y = 4 | −17y = −17 |:(−17) |
y = 1 |
Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».
x = 7 − 5y |
y = 1 |
x = 7 − 5 · 1 |
y = 1 |
x = 2 |
y = 1 |
Ответ: x = 2; y = 1
Пример решения системы уравнения
способом подстановки
Выразим из первого уравнения « x ».
x = 17 + 3y |
x − 2y = −13 |
Подставим вместо « x » во второе уравнение полученное выражение.
x = 17 + 3y |
(17 + 3y) − 2y = −13 (*) |
Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».
x = 17 + 3y |
y = −30 |
x = 17 + 3 · (−30) |
y = −30 |
x = 17 −90 |
y = −30 |
x = −73 |
y = −30 |
Ответ: x = −73; y = −30
Пример решения системы уравнения
способом сложения
Рассмотрим систему уравнений.
3(x − y) + 5x = 2(3x − 2) |
4x − 2(x + y) = 4 − 3y |
Раскроем скобки и упростим выражения в обоих уравнениях.
3x − 3y + 5x = 6x − 4 |
4x − 2x − 2y = 4 − 3y |
8x − 3y = 6x − 4 |
2x −2y = 4 − 3y |
8x − 3y − 6x = −4 |
2x −2y + 3y = 4 |
2x − 3y = −4 |
2x + y = 4 |
Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».
Для этого достаточно умножить первое уравнение на « −1 ».
2x − 3y = −4 | ·(−1) |
2x + y = 4 |
2x · (−1) − 3y · (−1) = −4 · (−1) |
2x + y = 4 |
−2x + 3y = 4 |
2x + y = 4 |
Теперь при сложении уравнений у нас останется только « y » в уравнении.
−2x + 3y = 4 | (−2x + 3y ) + (2x + y) = 4 + 4 |
+ => | − 2x + 3y + 2x + y = 4 + 4 |
2x + y = 4 | 4y = 8 | :4 |
y = 2 |
Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».
Алгебра. Урок 4. Уравнения, системы уравнений
Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Линейные уравнения
Примеры линейных уравнений:
Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.
Примеры решения линейных уравнений:
Это линейное уравнение, так как переменная стоит в первое степени.
Попробуем преобразовать его к виду a x = b :
Для начала раскроем скобки:
− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5
Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.
Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:
Это уравнение не является линейным уравнением.
Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)
Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:
Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:
Квадратные уравнения
Алгоритм решения квадратного уравнения:
Примеры решения квадратного уравнения:
D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64
D > 0 – будет два различных корня:
x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7
Ответ: x 1 = − 1, x 2 = 7
D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0
D = 0 – будет один корень:
x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2
D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31
Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!
Разложение квадратного трехчлена на множители
Квадратный трехчлен можно разложить на множители следующим образом:
a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )
где a – число, коэффициент перед старшим коэффициентом,
x – переменная (то есть буква),
a x 2 + b x + c = a ⋅ ( x − x 0 ) 2
Примеры разложения квадратного трехчлена на множители:
− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )
− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2
Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:
Дробно рациональные уравнения
Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.
ОДЗ – область допустимых значений переменной.
В выражении вида f ( x ) g ( x ) = 0
ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).
Алгоритм решения дробно рационального уравнения:
Пример решения дробного рационального уравнения:
Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.
Решение:
Будем действовать в соответствии с алгоритмом.
Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:
x 2 − 4 2 − x − 1 \ 2 − x = 0
x 2 − 4 2 − x − 2 − x 2 − x = 0
x 2 − 4 − ( 2 − x ) 2 − x = 0
x 2 − 4 − 2 + x 2 − x = 0
Первый шаг алгоритма выполнен успешно.
Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2
x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.
D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25
D > 0 – будет два различных корня.
x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3
Корни, полученные на предыдущем шаге:
Значит, в ответ идет только один корень, x = − 3.
Системы уравнений
Пример системы уравнений
Существует два метода решений систем линейных уравнений:
Алгоритм решения системы уравнений методом подстановки:
Решить систему уравнений методом подстановки
Решение:
y = − 28 − 7 = 28 7 = 4
x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0
Ответ можно записать одним из трех способов:
Решение системы уравнений методом сложения.
Метод сложения основывается на следующем свойстве:
Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.
Решить систему уравнений методом сложения
Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.
( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )
− 3 x − 6 y + 3 x − y = − 24 − 4
y = − 28 − 7 = 28 7 = 4
Ответ можно записать одним из трех способов:
Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.
Что значит решить систему рациональных уравнений
При выполнении различных алгебраических преобразований часто удобно пользоваться формулами сокращенного умножения. Зачастую эти формулы применяются не столько для того чтобы сократить процесс умножения, а наоборот скорее для того, чтобы по результату понять, что его можно представить как произведение некоторых множителей. Таким образом, данные формулы нужно уметь применять не только слева направо, но и справа налево. Перечислим основные формулы сокращенного умножения. Квадрат суммы:
Предыдущие две формулы также иногда записывают в несколько другом виде, который даёт нам какое-то выражение для суммы квадратов:
Также нужно понимать, что будет получаться если в скобках в квадрате знаки будут расставлены «нестандартным» способом:
Теперь идём далее. Формула сокращенного умножения разность квадратов:
Последние две формулы также часто удобно использовать в виде:
Квадратное уравнение и квадратный трехчлен
Пусть квадратное уравнение имеет вид:
Тогда дискриминант находят по формуле:
Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:
Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:
Если D 0), значение квадратного трехчлена:
Основные свойства степеней
У математических степеней есть несколько важных свойств, перечислим их. При умножении степеней с одинаковыми основаниями показатели степеней складываются:
При делении степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель степени делителя:
При возведении степени в степень показатели степеней перемножаются:
Если перемножаются числа с одинаковой степенью, но разным основанием, то можно сначала перемножить числа, а затем произведение возвести в эту степень. Обратная процедура также возможна, если имеется произведение в степени, то можно каждое из умножаемых возвести в эту степень по отдельности а результаты перемножить:
Также, если делятся числа с одинаковой степенью, но разным основанием, то можно сначала поделить числа, а затем частное возвести в эту степень (обратная процедура также возможна):
Несколько простых свойств степеней:
Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень. Ну а основное свойство отрицательной степени записывается следующим образом:
Основные свойства математических корней
Математический корень можно представить в виде обычной степени, а затем пользоваться всеми свойствами степеней приведёнными выше. Для представления математического корня в виде степени используют следующую формулу:
Тем не менее можно отдельно выписать ряд свойств математических корней, которые основываются на свойствах степеней описанных выше:
Для арифметических корней выполняется следующее свойство (которое одновременно можно считать определением корня):
Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при неотрицательном a. Для корня нечетной степени выполняется также следующее равенство (из под корня нечетной степени можно выносить знак «минус»):
Так как значение корня четной степени может быть только неотрицательным, то для таких корней имеется следующее важное свойство:
Некоторые дополнительные сведения из алгебры
Если x0 – корень многочлена n-ой степени Pn(x), то выполняется следующее равенство (здесь Qn-1(x) – некоторый многочлен (n – 1)-ой степени):
Процедура в рамках которой квадратный трехчлен представляется как скобка в квадрате и еще некоторое слагаемое называется выделением полного квадрата. И хотя операцию выделения полного квадрата проще выполнять каждый раз «с ноля» в конкретных цифрах, тем не менее имеется и общая формула, с помощью которой можно записывать сразу результат выделения полного квадрата:
Существует операция, обратная операции сложения дробей с одинаковыми знаменателями, и которая называется почленным делением. Она заключается в том, чтобы наоборот каждое слагаемое из суммы в числителе некоторой дроби, записать отдельно над знаменателем этой дроби. Для операции почленного деления также можно записать общую формулу:
Существует также формула для разложения суммы квадратов на множители:
Решение рациональных уравнений
Решить уравнение – значит найти все его корни. Основной метод решения – путем алгебраических преобразований или замены переменных свести уравнение к равносильному, которое решается просто (например, к квадратному). Если свести уравнение к равносильному не получается, то могут возникать побочные корни. Сомневаетесь – проверяйте корни подстановкой.
Для многих уравнений важно понятие области допустимых значений для корней, далее – ОДЗ. На данном этапе (в рациональных уравнениях, т.е. тех, которые не содержат арифметических корней, тригонометрических функций, логарифмов и т.д.), основное условие которому должны отвечать корни уравнения, это чтобы при их подстановке в изначальный вид уравнения знаменатели дробей не обращались в ноль, т.к. на ноль делить нельзя. Таким образом, ОДЗ включает все возможные значения кроме тех которые обращают в ноль знаменатели дробей.
При решении уравнений (а в дальнейшем и неравенств) нельзя сокращать множители с переменной в левой и правой части уравнения (неравенства), в этом случае Вы потеряете корни. Нужно переносить все выражения налево от знака равно и выносить «сокращающийся» множитель за скобки, в дальнейшем нужно учесть корни, которые он дает.
Для того чтобы произведение двух или более скобок было равно нулю, достаточно чтобы любая из них по отдельности была равна нулю, а остальные существовали. Поэтому в таких случаях нужно по очереди приравнивать все скобки к нулю. В итоговый ответ нужно записать корни всех этих «веток» решения (если конечно эти корни входят в ОДЗ).
Иногда некоторые из дробей в рациональном уравнении можно сократить. Это нужно обязательно попытаться сделать и не упустить ни одной такой возможности. Но при сокращении дроби Вы можете потерять ОДЗ, поэтому дроби нужно сокращать только после записи ОДЗ, или же в конце решения полученные корни подставлять в первоначальное уравнение для проверки существования знаменателей.
Итак, для решения рационального уравнения необходимо:
Одним из самых распространённых методов решения уравнений является метод замены переменных. Зачастую замена переменных выбирается индивидуально для каждого конкретного примера. При этом важно помнить о двух основных критериях введения замены в уравнения. Итак после введения замены в некоторое уравнение это уравнение должно:
Кроме того, важно не забывать выполнять обратную замену, т.е. после нахождения значений для новой переменной (для замены), записывать вместо замены то, чему она равна через первоначальную переменную, приравнивать это выражение к найденным значениям для замены и опять решать уравнения.
Отдельно остановимся на алгоритме решения очень распространённых однородных уравнений. Однородные уравнения имеют вид:
Здесь А, В и С – числа, не равные нулю, а f(x) и g(x) – некоторые функции с переменной х. Однородные уравнения решают так: разделим все уравнение на g 2 (x) и получим:
Производим замену переменных:
И решаем квадратное уравнение:
Получив корни этого уравнения не забываем выполнить обратную замену, а также проверить корни на соответствие ОДЗ.
Также при решении некоторых рациональных уравнений хорошо бы помнить про следующие полезные преобразования:
Решение систем рациональных уравнений
Решить систему уравнений – значит найти не просто решение, а комплекты решений, то есть такие значения всех переменных которые, будучи одновременно подставленными в систему, обращают каждое ее уравнение в тождество. При решении систем уравнений можно применять следующие методы (про ОДЗ при этом не забываем):
После применения этой замены, к слову, нужно будет для продолжения решения таких систем использовать метод деления. Второй случай, это симметричные системы с двумя переменными, т.е. такие системы, которые не изменяются при замене x на y, а y на x. В таких системах необходимо применять следующую двойную замену переменных:
При этом, для того чтобы ввести такую замену в симметричную систему, первоначальные уравнения скорее всего придется сильно преобразовывать. Про ОДЗ и обязательность выполнения обратной замены в обоих этих методах, конечно нельзя забывать.
Как успешно подготовиться к ЦТ по физике и математике?
Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:
Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.
Нашли ошибку?
Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.
ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.