Прежде чем перейти к разбору темы «Как решать систему линейных неравенств» обязательно внимательно изучите урок «Как решать неравенства».
Потренируйтесь в решении неравенств, тогда с системами неравенств у вас не возникнет трудностей.
Системой неравенств называют два или более неравенства, которые объединены фигурной скобкой.
Рассмотрим пример системы неравенств.
Как видно на примере выше, систему неравенств легко определить по фигурной скобке.
Как решить систему неравенств
Чтобы решить систему неравенств нужно:
Вернемся к нашему примеру системы неравенств.
Так как оба неравенства в системе уже решены и представляют собою готовый ответ, то сразу переходим к поиску общего решения всей системы.
Для этого проведем две числовые оси (для каждого из неравенств свою). На осях заштрихуем результат решения неравенств.
Числовые оси с решениями нужно располагать друг под другом.
Числа на осях отмечают в порядке возрастания. То есть число « 2 » будет находиться левее « 5 ».
x > 2
x > 5
После того как мы построили числовые оси с решениями неравенств, необходимо провести через отмеченные на осях числа перпендикулярные прямые.
При проведении прямых через точки на осях соблюдают следующие правила:
Проведем прямые через числовые точки на осях.
Для определения ответа найдем те области решения, которые удовлетворяют ответам обоим неравенствам. Другими словами, те области, где в обоих случаях области решений заштрихованы.
Исходя из полученного анализа, мы получаем, что решением системы неравенств будет « x > 5 ». Запишем полученный ответ.
x > 2
x > 5
Рассмотрим другой пример системы неравенств.
Запись двойного неравенства используют, когда интервал решения системы неравенств лежит между числами.
Числа записываются в том же порядке, что они расположены на оси.
Другие примеры решения систем неравенств
В отличии от примеров выше, как правило, в системах неравенств перед поиском общего решения всей системы необходимо предварительно решить каждое из неравенств.
Рассмотрим и решим систему, где неравенства требуют предварительного решения.
Решим линейные неравенства по правилам, описанным в уроке «Решение линейных неравенств». Затем найдем общий ответ системы.
5(x + 1) − x > 2x + 2
4(x + 1) − 2 ≤ 2(2x + 1) − x
5x + 5 − x > 2x + 2
4x + 4 − 2 ≤ 4x + 2 − x
5x − x + 5 > 2x + 2
4x + 4 − 2 ≤ 4x + 2 − x
4x + 5 > 2x + 2
4x + 2 ≤ 3x + 2
4x − 2x > 2 − 5
4x − 3x ≤ 2 − 2
2x > −3 | (:2)
x ≤ 0
2x (:2) > −3 (:2)
x ≤ 0
x > −
3
2
x ≤ 0
x > − 1
1
2
x ≤ 0
Ответ: −1
1
2
При решении систем неравенств, в которых есть неравенства, содержащие пропорцию, используем правило пропорции.
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
Смысл выколотой точки в том, что сама точка в ответ не входит.
Смысл жирной точки в том, что сама точка входит в ответ.
Таблица числовых промежутков
Неравенство
Графическое решение
Форма записи ответа
x c
Алгоритм решения линейного неравенства
a x b a x ≤ b a x > b a x ≥ b
Примеры решения линейных неравенств:
№1. Решить неравенство 3 ( 2 − x ) > 18.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )
№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x + 4 ≥ 3 x + 3 − 14
6 x − 3 x ≥ 3 − 14 − 4
x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).
Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).
№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
x + 6 − 9 x > − 8 x + 48
Квадратные неравенства
Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.
Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).
Алгоритм решения квадратного неравенства методом интервалов
Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.
Примеры решения квадратных неравенств:
№1. Решить неравенство x 2 ≥ x + 12.
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49
Это значит, что знак на интервале, в котором лежит точка 10 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
№5. Решить неравенство x 2 4.
Решение:
Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.
( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2
x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0
Это значит, что знак на интервале, в котором лежит точка 3 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
№6. Решить неравенство x 2 + x ≥ 0.
Решение:
Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.
x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1
x 2 + x = 1 2 + 1 = 2 > 0
Это значит, что знак на интервале, в котором лежит точка 1 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )
Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.
Дробно рациональные неравенства
Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:
f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).
Примеры дробно рациональных неравенств:
x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3
Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.
Алгоритм решения дробно рациональных неравенств:
f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.
Примеры решения дробно рациональных неравенств:
№1. Решить неравенство x − 1 x + 3 > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.
Это значит, что знак на интервале, в котором лежит точка 2 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )
№2. Решить неравенство 3 ( x + 8 ) ≤ 5.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
3 ( x + 8 ) − 5 \ x + 8 ≤ 0
3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 x − 40 x + 8 ≤ 0
x = − 37 5 = − 37 5 = − 7,4
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.
− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )
№3. Решить неравенство x 2 − 1 x > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.
x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )
Системы неравенств
Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.
Пример системы неравенств:
Алгоритм решения системы неравенств
Примеры решений систем неравенств:
№1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Точка 4 на графике жирная, так как знак неравенства нестрогий.
− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.
Графическая интерпретация решения:
Точка 2 на графике жирная, так как знак неравенства нестрогий.
№2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Точка 3 на графике жирная, так как знак неравенства нестрогий.
Графическая интерпретация решения:
№3. Решить систему неравенств < 3 x + 1 ≤ 2 x x − 7 >5 − x
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Графическая интерпретация решения:
Графическая интерпретация решения:
Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.
№4. Решить систему неравенств < x + 4 >0 2 x + 3 ≤ x 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Графическая интерпретация решения первого неравенства:
Решаем методом интервалов.
D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16