Что значит рекуррентная формула

Рекуррентная формула

При суммировании ряда необходимо решить следующие задачи:

a) свести вычисления к простейшим арифметическим операциям;

b) уменьшить число этих операций и время расчета;

c) уменьшить погрешность округления.

Рассмотрим вычисление функции sin x. Разложение этой функции в ряд Тейлора имеет следующий вид

Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула.

Область сходимости ряда определяется неравенством Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула, то есть ряд сходится при любом значении x.

Величина n! называется “nфакториал” и вычисляется по формуле:

n! = 1 × 2 × 3 × … × (n – 1) × n = (n – 1)! × n или Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

Принято считать, что 0! = 1.

Суммирование ряда последовательным вычислением слагаемых и добавлением их к сумме, как на приведенной выше блок-схеме, сводит вычисления к простейшим арифметическим операциям, то есть первая задача при этом решается. Что касается второй задачи – уменьшения количества этих операций, – то многократное перемножение чисел в числителе (степени x) и в знаменателе (n!) вряд ли можно считать рациональным. При этом (третья задача) погрешность вычислений возрастает с увеличением номера члена ряда – слишком велики становятся и числитель, и знаменатель.

Задачи сокращения количества операций и уменьшения погрешности вычислений решает рекуррентная формула, позволяющая вычислить значение очередного члена ряда, используя уже найденное значение предыдущего. Рекуррентная формула имеет вид:

В нашем примере произвольный член ряда определяется формулой:

Номер начального члена ряда n = 0, его значение a0 = x.

Для расчета коэффициента рекурсии

Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

определим значение следующего (n+1)-го члена ряда.

В формулу общего члена ряда Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

вместо n подставим (n+1), получим Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

Вычисляя коэффициент рекурсии, сокращаем дробь:

Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

Чтобы сократить факториалы, рассмотрим числитель и знаменатель отдельно:

(2n + 1)! = 1 × 2 × 3 × … × (2n + 1)

(2n + 3)! = 1 × 2 × 3 × … × (2n + 1) × (2n + 2) × (2n + 3)

Окончательная формула коэффициента рекурсии

Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

Отсюда получаем рекуррентную формулу для вычисления членов ряда

Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

Проверка полученной формулы убережет Вас от ошибок в алгоритме и, возможно, сэкономит усилия при отладке программы.

Подставив n = 0 в формулу общего члена ряда Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула, получаем a0 = x.

Далее определим по рекуррентной формуле a1 и a2, сверяя результаты с соответствующими членами ряда:

при n = 0 Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

при n = 1 Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула

Совпадение полученных значений с членами ряда показывает, что коэффициент рекурсии рассчитан правильно.

Дата добавления: 2017-09-19 ; просмотров: 1223 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Рекуррентная формула

Рекуррентная формула — формула вида Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формула, выражающая каждый член последовательности Что значит рекуррентная формула. Смотреть фото Что значит рекуррентная формула. Смотреть картинку Что значит рекуррентная формула. Картинка про Что значит рекуррентная формула. Фото Что значит рекуррентная формулачерез p предыдущих членов.

Общая проблематика вычислений с использованием рекуррентных формул является предметом теории рекурсивных функций.

Содержание

Примеры

Приложения

Рекуррентные формулы используются для описания времени работы алгоритма, рекурсивно обращающегося к самому себе. В такой формуле время, требуемое для решения задачи объемом ввода n, выражается через время решения вспомогательных подзадач. [1]

См. также

Примечания

Полезное

Смотреть что такое «Рекуррентная формула» в других словарях:

рекуррентная формула — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN recurrence formularecursion formula … Справочник технического переводчика

рекуррентная формула — rekurentinė formulė statusas T sritis fizika atitikmenys: angl. recurrence formula vok. Rekursionsformel, f rus. рекуррентная формула, f pranc. formule de récurrence, f … Fizikos terminų žodynas

Рекуррентная формула — (от лат. recurrens, родительный падеж recurrentis возвращающийся) формула приведения, формула, сводящая вычисление n го члена какой либо последовательности (чаще всего числовой) к вычислению нескольких предыдущих её членов. Обычно эти… … Большая советская энциклопедия

РЕКУРРЕНТНАЯ ТОЧКА — д и н а м и ч е с к о й с и с т е м ы точка хдинамич. системы ft (или, в иных обозначениях, f(t,.), см. [2]), заданной на метрич. пространстве S, удовлетворяющая условию: для всякого e>0 найдется T>0 такое, что все точки траектории ftx… … Математическая энциклопедия

Математическая формула — Эта статья об обозначениях элементарной математики; Для более общего контекста см.: Математические обозначения. Математическая формула (от лат. formula уменьшительное от forma образ, вид) принятая в математике (а также… … Википедия

Источник

Решение рекуррентных соотношений

Содержание

Определения [ править ]

[math] F_0 = 0,\qquad F_1 = 1,\qquad F_ = F_ + F_, \quad n\geqslant 2, \quad n\in Z[/math]

Для этого можно использовать метод производящих функций (англ. generating function method).

Метод производящих функций [ править ]

Примеры [ править ]

[math]1[/math] пример [ править ]

Производящие функции позволяют решать рекуррентные соотношение механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.

Задано линейное однородное рекуррентное соотношение порядка [math]2[/math] с постоянными коэффициентами:
[math]\begin a_0&<>=<>&0,\\ a_1&<>=<>&1,\\ a_n&<>=<>&5a_-6a_, \quad n\geqslant2.\\ \end [/math]

Будем искать производящую функцию последовательности в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n = a_0+a_1z+a_2z^2+\cdots, [/math]

Теперь сложим все уравнения для всех значений [math]n[/math] :
[math] \underbrace^<\infty>a_nz^n>_ <=>z+5\displaystyle\sum_^<\infty>a_z^n-6\displaystyle\sum_^<\infty>a_z^n. [/math]

Аналогичные манипуляции со второй суммой дают нам выражение
[math] \displaystyle\sum_^<\infty>a_z^n = z^2\displaystyle\sum_^<\infty>a_z^ = z^2\displaystyle\sum_^<\infty>a_z^=z^2G(z). [/math]

откуда получаем производящую функцию последовательности в замкнутом виде:
[math] G(z) = \dfrac<1-5z+6z^2>. [/math]

Теперь разобьём дробь на сумму простых дробей:
[math] \dfrac <(1-3z)(1-2z)>= \dfrac<1> <1-3z>— \dfrac<1><1-2z>. [/math]

Из этого разложения следует, что
[math] \dfrac<1><1-3z>= \displaystyle\sum_^<\infty>(3z)^n \quad\mbox< и >\quad \dfrac<1><1-2z>= \displaystyle\sum_^<\infty>(2z)^n. [/math]

С другой стороны, мы искали [math]G(z)[/math] в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n, [/math]
поэтому, в силу равенства рядов, [math]a_n=3^n-2^n[/math] (для [math]n\geqslant 0[/math] ).

[math]2[/math] пример: числа Фибоначчи [ править ]

Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
[math]\begin f_0&<>=<>&0,\\ f_1&<>=<>&1,\\ f_n&<>=<>&f_+f_, \quad n\geqslant2.\\ \end [/math]

Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
[math]\begin 1\cdot f_0&<>=<>&0\cdot 1,\\ z\cdot f_1&<>=<>&1\cdot z,\\ z^n\cdot f_n&<>=<>&(f_+f_)\cdot z^n, \quad n\geqslant2.\\ \end [/math]

Складываем все строчки:
[math] f_0 + f_1 z + \displaystyle\sum_^<\infty>f_nz^n = z + \displaystyle\sum_^<\infty>f_z^n+\displaystyle\sum_^<\infty>f_z^n. [/math]

Третий шаг алгоритма требует привести все суммы к замкнутому виду:
[math]\begin G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^+z^2\displaystyle\sum_^<\infty>f_z^, \\ G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^n+z^2\displaystyle\sum_^<\infty>f_z^n, \\ G(z)&<>=<>& \displaystyle z + z(G(z)-f_0)+z^2G(z),\\ G(z)&<>=<>& \displaystyle z + zG(z)+z^2G(z),\\ \end [/math]

откуда получаем замкнутое выражение для производящей функции:
[math] G(z) = \dfrac<1-z-z^2>. [/math]

Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
[math]\displaylines< 1-z-z^2 = 0 \cr z_1=-\dfrac<1-\sqrt<5>><2>, z_2=-\dfrac<1+\sqrt<5>><2>. > [/math]

Нам известно разложение следующей рациональной функции:
[math] \dfrac<1> <1-z>= \displaystyle\sum_^<\infty>z^n = 1 + z + z^2 + z^3 + \cdots. [/math]

Рассмотрим первую дробь и поделим в ней числитель и знаменатель на [math]z_1[/math] :
[math] \dfrac = \dfrac1\dfrac<1><1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

Аналогично (но с делением на [math]z_2[/math] ) поступим со второй дробью:
[math] \dfrac = \dfrac1\dfrac1<1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

[math]3[/math] пример [ править ]

Рекуррентное соотношение:
[math] \begin a_0 = f_0^2 = 1 \\ a_1 = f_1^2 = 1 \\ a_2 = f_2^2 = 4 \\ a_n = 2a_ + 2a_ — a_, \quad n\geqslant3.\\ \end [/math]

[math]4[/math] пример [ править ]

Рассмотрим следующее рекуррентное соотношение:
[math]\begin a_0&<>=<>&1,\\ a_1&<>=<>&2,\\ a_n&<>=<>&6a_-8a_+n, \quad n\geqslant2.\\ \end [/math]

Вспомним, что
[math] (z^n)’ = nz^, [/math]

поэтому
[math] \displaystyle\sum_^<\infty>nz^n=z\displaystyle\sum_^<\infty>nz^=z\displaystyle\sum_^<\infty>(z^n)’=z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’. [/math]

Последняя сумма может быть свёрнута:
[math] \displaystyle\sum_^<\infty>z^n=\displaystyle\sum_^<\infty>z^n-1-z=\dfrac<1><1-z>-1-z=\dfrac<1-z>. [/math]

Подставив свёрнутое выражение обратно, имеем,
[math] z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’ = z \biggl(\dfrac<1-z>\biggr)’=\dfrac<(1-z)^2>. [/math]

Это уравнение для производящей функции. Из него выражаем [math]G(z)[/math] :
[math] G(z) = \dfrac<1-6z+11z^2-5z^3><(1-6z+8z^2)(1-z)^2>. [/math]

Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
[math] \dfrac<1> <(1-z)^2>=(1-z)^ <-2>=\displaystyle\sum_^<\infty>\binom<-2>(-z)^n=\displaystyle\sum_^<\infty>(-1)^n\binom<1>(-z)^n =\displaystyle\sum_^<\infty>(n+1)z^n. [/math]

Источник

Рекуррентные соотношения и уравнения

В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.

Как решать рекуррентные соотношения?

Для решения рекуррентных соотношений применяют один из двух основных способов:

В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.

Метод производящих функций

Метод характеристических функций

Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:

Решение для последовательности чисел Фибоначчи

Общая формула данной рекуррентной последовательности имеет вид6

Способ 1. Производящяя функция

$$\begin 1\cdot f_0 &= &0\cdot 1,\\ z\cdot f_1 &= &1\cdot z,\\ z\cdot f_n & = &(f_+f_)\cdot z^n, \quad n\geq2.\\ \end $$

Складываем все строчки:

На третьем шаге алгоритма приводим все суммы к замкнутому виду:

откуда выводим искомое выражение для производящей функции:

Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:

Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:

Преобразуем данное выражение, используя то, что

Способ 2. Характеристическое уравнение

Тогда общее решение однородного рекуррентного уравнения имеет вид:

Решая систему, найдем

Итоговое выражение для последовательности чисел Фибоначчи:

Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.

Примеры решений

Источник

Что значит «рекуррентная формула»

Энциклопедический словарь, 1998 г.

Большая Советская Энциклопедия

Последовательность jn ≈ т. н. чисел Фибоначчи ≈ задаётся формулами:

j0 = 0, j1 = 1, jn+2 = jn+1 + jn (n > 0)

Последняя из них является Р. ф.; она позволяет вычислить j2, j3 и дальнейшие члены этой последовательности.

Нетрудно показать, что для n ³ 2 выполняется соотношение

Это ≈ Р. ф., сводящая вычисление In к вычислению /0 или l1 в зависимости от чётности n.

Р. ф. обычно даёт удобную вычислительную схему для нахождения членов последовательности друг за другом. Однако иногда, исходя из Р. ф., стремятся получить «явное» выражение для n-го члена последовательности, описываемой этой Р. ф. Так, в случае чисел Фибоначчи

Википедия

Рекуррентная формула — формула вида a = f(n, a, a, …, a), выражающая каждый член последовательности a через p предыдущих членов и возможно номер члена последовательности n.

Рекуррентным уравнением называется уравнение, связывающее несколько подряд идущих членов некоторой числовой последовательности. Последовательность, удовлетворяющая такому уравнению, называется рекуррентной последовательностью.

Транслитерация: rekurrentnaya formula
Задом наперед читается как: алумроф яантнеррукер
Рекуррентная формула состоит из 19 букв

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *