Что значит регуляторная функция белков

Регуляторная функция белков

Регуляторная функция белков ― осуществление белками регуляции процессов в клетке или в организме, что связано с их способностью к приёму и передаче информации. Действие регуляторных белков обратимо и, как правило, требует присутствия лиганда. Постоянно открывают всё новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть.

Существует несколько разновидностей белков, выполняющих регуляторную функцию:

Содержание

Белки, участвующие в межклеточной сигнализации

Белки-гормоны (и другие белки, участвующие в межклеточной сигнализации) оказывают влияние на обмен веществ и другие физиологические процессы.

Гормоны — вещества, которые образуются в железах внутренней секреции, переносятся кровью и несут информационный сигнал. Гормоны распространяются безадресно и действуют только на те клетки, которые имеют подходящие белки-рецепторы. Гормоны связываются со специфическими рецепторами. Обычно гормоны регулируют медленных процессы, например, рост отдельных тканей и развитие организма, однако есть и исключения: например, адреналин (см. статью адреналин) — гормон стресса, производное аминокислот. Он выделяется при воздействии нервного импульса на мозговой слой надпочечников.При этом начинает чаще биться сердце, повышается кровяное давление и наступают другие ответные реакции. Также он действует на печень(расщепляет гликоген). Глюкоза выделяется в кровь, и ее используют мозг и мышцы как источник энергии.

Белки-рецепторы

Что значит регуляторная функция белков. Смотреть фото Что значит регуляторная функция белков. Смотреть картинку Что значит регуляторная функция белков. Картинка про Что значит регуляторная функция белков. Фото Что значит регуляторная функция белков

Что значит регуляторная функция белков. Смотреть фото Что значит регуляторная функция белков. Смотреть картинку Что значит регуляторная функция белков. Картинка про Что значит регуляторная функция белков. Фото Что значит регуляторная функция белков

К белкам с регуляторной функцией можно отнести также белки-рецепторы. Мембранные белки — рецепторы передают сигнал с поверхности клетки внутрь, преобразовывая его. Они регулируют функции клеток за счет связывания с лигандом, который «сел» на этот рецептор снаружи клетки; в результате активируется другой белок внутри клетки.

Большинство гормонов действуют на клетку, только если на ее мембране есть определенный рецептор — другой белок или гликопротеид. Например, β2- адренорецептор находится на мембране клеток печени. При стрессе молекула адреналина связывается с β2- адренорецептором и активирует его. Далее активированный рецептор активирует G-белок, который присоединяет ГТФ. После многих промежуточных этапов передачи сигнала происходит фосфоролиз гликогена. Рецептор осуществил самую первую операцию по передаче сигнала, ведущего к расщеплению гликогена. Без него не было бы последующих реакций внутри клетки.

Внутриклеточные регуляторные белки

Белки регулируют процессы, происходящие внутри клеток, при помощи нескольких механизмов:

Белки-регуляторы транскрипции

Транскрипционный фактор — это белок, который, попадая в ядро, регулирует транскрипцию ДНК, то есть считывание информации с ДНК на мРНК (синтез мРНК по матрице ДНК). Некоторые транскрипционные факторы изменяют структуру хроматина, делая его более доступным для РНК-полимераз. Существуют различные вспомогательные транскрипционные факторы, которые создают нужную конформацию ДНК для последующего действия других транскрипционных факторов. Еще одна группа транскрипционных факторов — это те факторы, которые не связываются непосредственно с молекулами ДНК, а объединяются в более сложные комплексы с помощью белок-белковых взаимодействий.

Факторы регуляции трансляции

Трансляция — синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами, в том числе и с помощью белков-репрессоров, которые, связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК. В этом случае происходит регуляция по типу обратной связи (примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы).

Факторы регуляции сплайсинга

Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются интронами. Они сначала переписываются на пре-мРНК при транскрипции, но затем вырезаются особым ферментом. Этот процесс удаления интронов, а затем последующее сшивание концов оставшихся участков называют сплайсингом (сшивание, сращивание). Сплайсинг осуществляется с помощью небольших РНК, обычно связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса(сплайсосомы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комплекса есть белки, обладающие АТФ-азной активностью.

Существует альтернативный сплайсинг. Особенности сплайсинга определяются белками, способными связываться с молекулой РНК в областях интронов или участках на границе экзон-интрон. Эти белки могут препятствовать удалению одних интронов и в то же время способствовать вырезанию других. Направленная регуляция сплайсинга может иметь значительные биологические последствия. Например, у плодовой мушки дрозофилы альтернативный сплайсинг лежит в основе механизма определения пола.

Протеинкиназы и протеинфосфатазы

Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Протеинкиназы регулируют активность других белков путем фосфолирования — присоединения остатков фосфорной кислоты к остаткам аминокислот, имеющих гидроксильные группы. При фосфорилировании обычно изменяется функционирование данного белка, например, ферментативная активность, а также положение белка в клетке.

Существуют также протеинфосфатазы — белки, которые отщепляют фосфатные группы. Протеинкиназы и протеинфосфатазы регулируют обмен веществ, а также передачу сигналов внутри клетки. Фосфорилирование и дефосфорилирования белков — один из главным механизмов регуляции большинства внутриклеточных процессов.

Источник

Что значит регуляторная функция белков

• Небольшие белки, связывающиеся с ГТФ, активны, когда связаны с ГТФ и неактивны при связывании с ГДФ

• Активация ускоряется под действием GEF (фактора обмена гуаниловых нуклеотидов), который является катализатором обмена ГДФ/ГТФ

• GAP ускоряет гидролиз и инактивацию

• Ингибиторы диссоциации ГДФ (GDI) замедляют спонтанный обмен нулеотидов

ГТФ-связывающие белки, обладающие мономерной структурой, у млекопитающих кодируются примерно 150 генами. Они модулируют самые разнообразные внутриклеточные процессы, включая передачу сигнала, перемещение органелл и транспорт в них метаболитов, сборку цитоскелета и морфогенез. К числу небольших ГТФ-связывающих белков, участвующих в системах передачи сигналов, относятся Ras и родственные белки (Ral, Rap), а также Rho/Rac/Cdc42. Общее их количество достигает 10-15 белков. Их размер обычно составляет 20-25 кДа, и они гомологичны ГТФ-связывающим доменам субъединиц Ga.

Регуляторные свойства небольших ГТФ-связывающих белков находятся под контролем ГТФ и цикла гидролиза, так же как это имеет место для гетеротримеров G-белков, проявляющих аналогичные регуляторные функции. Они активируются под действием ГТФ, и гидролиз связанного ГТФ до ГДФ приводит к их инактивации. Катализаторы обмена ГДФ/ГТФ, известные как GEF (факторы обмена гуаниловых нуклеотидов, функционально аналогичные GPCR), способствуют активации, и белки GAP ускоряют гидролиз и последующую инактивацию. Наряду с этим, ингибиторы диссоциации ГДФ (GDI) замедляют спонтанный обмен нуклеотидов и активацию, что снижает базальную активность, свойственную субъединицам Gβγ гетеротримеров G-белков.

Хотя основные регуляторные элементы для мономеров и гетеротримеров G-белков одинаковы, мономерные белки дополнительно используют основной ГТФазный цикл. Считается, что выходной сигнал гетеротримеров G-белков и многих их мономеров обычно отражает состояние равновесия между их активным (связанным с ГТФ) и неактивным (связанным с ГДФ) состоянием, которое существует в быстро оборачивающемся ГТФазном цикле. GEF способствуют образованию более активного G-белка, a GAP, его неактивному состоянию. Напротив, примерно одинаковое количество мономеров G-белков функционируют в качестве переключателей. Они начинают выполнять свои функции (регуляцию, мобилизацию других белков) после связывания ГТФ. Затем, в течение многих секунд или минут, они сохраняют свою активность до тех пор, пока на них не подействуют GAP.

Что значит регуляторная функция белков. Смотреть фото Что значит регуляторная функция белков. Смотреть картинку Что значит регуляторная функция белков. Картинка про Что значит регуляторная функция белков. Фото Что значит регуляторная функция белковRas-ГТФ связывается со многими белками.
Три распространенных эффектора включают Raf, PI 3-киназу и RaIGDS.
При активации этих эффекторов активируются процессы с участием МАРК,
увеличивается активность PI 3-киназы и сборка белкового комплекса, участвующего в экзоцитозе секреторных везикул.

Цитоплазматический комплекс Ran-ГДФ отщепляется от экспортирующих кариоферинов, что облегчет диссоциацию выходящего карго, и от импортирующих кариоферинов, тем самым позволяя предназначенному на импорт карго связаться с ними. Таким образом, для таких мономерных G-белков, как Ran, каждая фаза ГТФазного цикла определяет специфический сопряженный этап в параллельном регуляторном цикле.

Следующее основное различие между мономерами и гетеротримерами G-белков касается структуры GEF, GAP, и GDI. Как GEF, так и GAP для мономеров ГТФ-связывающих белков гетерогенны по своей структуре (хотя существуют отдельные структурно близкие семейства). Вместе с тем, механизмы, регулирующие эти GEF и GAP, различны. Они включают фосфорилирование протеин-киназами, аллостерическую регуляцию гетеротримерами и/или мономерами G-белков, вторичными мессенджерами и другими регуляторными белками; особенности субклеточной локализации или мобилизации на каркасных структурах, а также другие механизмы.

Белки Ras представляют собой первые из обнаруженных небольших ГТФ-связывающих белков. Они были идентифицированы как продукты онкогенов, поскольку при гиперэкспрессии или при постоянной активации за счет мутации вызывают злокачественный рост. Они относятся к числу наиболее часто мутирующих генов в опухолях человека. Некоторые вирусные ras гены представляют собой хорошо известные онкогены.

В клетках млекопитающих присутствуют три гена ras (Н, N и К). Они в различной степени могут участвовать в формировании реакций на входе и выходе и заменять друг друга в некоторых генетических проявлениях. Отдельным Ras белкам трудно приписать уникальные функции. С участием Ras белков на входе происходит много различных процессов, что свидетельствует об их роли в качестве критических узлов цепей передачи сигналов.

Регуляция активности Ras GEF и GAPS осуществляется посредством Туг киназ рецепторного и нерецепторного происхождения, за счет прямого фосфорилирования и мобилизации регуляторов на плазматической мембране. В активации Ras также принимают участие другие серин/треонин киназы цитоплазматического происхождения. Еще один представитель семейства Ras, Rap1, также участвует в активации, поскольку предполагается, что он конкурирует с белками Ras за мишени протеинкиназ; in vivo он может подавлять онкогенную активность Ras. Однако, Rapl регулируется независимо и также влияет на независимые пути передачи сигналов.

Например, один из его GAP стимулируется представителями Gi группы G-белков, а несколько GEF активируются Са2+, диацилглицерином и цАМФ.

Белки Ras обычно регулируют рост, пролиферацию и дифференцировку клеток, модулируя активность многих эффекторных белков. К числу наиболее известных и хорошо изученных эффекторов Ras относится протеинкиназа Raf, запускающая МАРК каскад. На рисунке ниже представлены некоторые из эффекторов Ras.

Rho, Rac и Cdc42 представляют собой родственные ГТФ-связывающие белки, обладающие мономерной структурой, которые участвуют в формировании сигналов, влияющих на морфологию клеток Каждый класс белков регулирует собственный набор эффекторов и контролируется отдельными группами GEF, GAP и GDI. Эффекторы, находящиеся под контролем этих групп белков, включают фосфолипазы С и D, различные протеинкиназы и липидные киназы, белки, участвующие в нуклеации или реорганизации актиновых филаментов, и компоненты системы генерации активного кислорода в нейтрофилах.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *