Что значит размер буфера для каждого процессора
Как разогнать Android-смартфон через меню разработчиков
Медлительность Android по сравнению с iOS всегда была мифом, в который почему-то верили миллионы человек. Просто дизайнеры Apple скрыли задержку от запуска приложения до его фактического открытия анимацией, а в Google до этого не додумались. Таким же мифом является склонность Android к засорению и замедлению через какое-то время после начала использования. Дескать, системные кластеры забиваются и уже не могут обеспечивать былой уровень быстродействия. Вот только никто не говорит, что обычно «замедляются» именно старые устройства и только в сравнении с новыми. Но это не значит, что разогнать Android нельзя совсем. Можно.
Разогнать Android можно. Для этого в настройках ОС есть специальные параметры
В Android есть так называемое меню разработчиков. Несмотря на то что оно действительно предназначается для создателей программного обеспечения, рядовые пользователи очень любят включать его, а потом что-то там настраивать и менять, якобы улучшая работу своего устройства. Зачастую это, само собой, совершенно не так. Однако есть несколько надстроек, которые могут позволить хоть немного, но ускорить Android, сделав его чуть отзывчивее, быстрее и податливее. Главное – не переборщить.
Настройки разработчика Android
Для начала нам потребуется активировать меню разработчиков. Если оно у вас уже есть, переходите сразу к третьему пункту инструкции, а если нет – начинайте с первого. Но помните, что активация этих параметров может привести к повышенному ресурсопотреблению и сокращению времени автономной работы.
Все необходимые параметры скрыты в меню разработчиков
Активируйте три этих параметра и отключите анимацию
Как ускорить Android
Разогнать Android можно и в играх, и при работе с интерфейсом
Эти три параметра действительно способны разогнать интерфейс вашего смартфона. Вот как это происходит:
Ускорение работы GPU активирует графический ускоритель при отрисовке двумерных элементов. Казалось бы, зачем вообще это нужно? А, между тем, весь интерфейс вашего смартфона и большинство сайтов целиком состоят из 2D-элементов. Активировав ускорение, вы заставите смартфон задействовать графический сопроцессор при обработке всех этих компонентов, а поскольку их в повседневной жизни встречается довольно много, то и прирост быстродействия будет заметен в большинстве задач.
Включение параметра 4x MSAA способно напрямую повлиять на ваше восприятие игр. Независимо от того, двумерная или трёхмерная игра запущена на вашем устройстве, этот пункт повышает контурную детализацию, минимизируя рябь и подёргивания на краях рисованных объектов. В результате создаётся ощущение более плавной обработки видимых графических компонентов. Если хотите, это совсем дешёвый аналог режима 120 Гц, повышающего частоту обновления и делающего картинку более плавной.
Повысить быстродействие смартфона
Ускорить даже интерфейс Android — это уже большое дело
Отключение аппаратного наложения позволяет задействовать графический сопроцессор при отрисовке компонентов экрана, за счёт чего высвобождается ресурс центрального процессора, и он больше не нагружается в базовых задачах. Может показаться, что этот параметр полностью противоречит первому, но это не совсем так. Вернее, совсем не так. Просто они отвечают за разные процессы.
Смените раскрытые пароли. Что это значит и как реагировать
Изменение скорости анимации – это чисто визуальный, или, если хотите, косметический показатель. В действительности он не повышает скорость запуска приложений, просто он удаляет анимацию, которая по умолчанию заполняет «пустоту» от момента запуска приложения до момента его активации. Но если раньше такая пустота действительно была, и её требовалось чем-то заполнять, то современные смартфоны её практически не допускают. В результате кажется, что приложения из-за анимации запускаются чуть дольше.
Как ускорить любой телефон Android с помощью секретной настройки
Как можно быстро ускорить работу смартфона и повысить его производительность всего за пару минут, не прибегая к получению Root прав. Для этого вам не потребуется сложных технических знаний, необходимо лишь знать некоторые фишки, которые скрыты от глаз пользователя внутри интерфейса Android и следовать инструкции hi-tech.
Речь сегодня пойдет о режиме разработчика Android, доступ к функционалу которого может получить абсолютно каждый пользователь устройства этой операционной системы. Для этого лишь нужно активировать этот режим с помощью секретного действия.
Итак, переходим в «Настройки» и открываем пункт «Сведения о телефоне» → «Сведения о ПО».
Находим здесь пункт «Номер Сборки».
Для включения режима разработчика нажимаем на него 7 раз подряд. Система несколько раз оповестит нас о текущем этапе включения режима, после чего уведомит об активации.
Возвращаемся на предыдущую страницу настроек и видим, что в меню появился новый пункт «Параметры разработчика».
Теперь вы можете самостоятельно управлять работой вашего устройства и более гибко настраивать различные параметры системы, такие как:
Ускорить работу системы нам поможет настройка графического ускорителя.
Все приложения, в зависимости от разработчика, могут обрабатываться либо основным процессором, либо графическим ускорителем. С помощью режима разработчика мы можем принудительно зафиксировать устройство на обработку всех приложений с помощью графического ускорителя, тем самым разгрузить основной процессор при работе с приложениями.
Этот пункт находится в меню параметра «Аппаратное ускорение отрисовки», но в зависимости от версии Android и модели вашего устройства, может называться по-разному («Принудительная обработка GPU», «Обработка графическим процессором» или «Ускорение работы GPU»). Его задача – активировать принудительную отрисовку интерфейса приложений с помощью графического процессора.
Единственный недостаток этой функции – незначительное повышение расхода оперативной памяти при работе с приложениями. Но для большинства современных смартфонов, имеющих большой запас оперативной памяти, ради повышения плавности и скорости работы этим вполне можно пренебречь.
Второй пункт, ускоряющий систему – «Отключение аппаратного наложения», который также позволяет подключать ресурсы GPU при компоновке экрана, освобождая основной процессор.
Последний пункт меню параметра «Аппаратное ускорение отрисовки», позволяющий ускорить работу устройства – «Включение 4x MSAA» («Force 4xMSAA»). Настройка добавляет детализации на контурах, снижая рябь, благодаря чему картинка в играх становится более плавной.
Какой оптимальный размер буфера?
Оценить 2 комментария
На самом деле идеальный буфер от много зависит: от размера блоков вашей файловой системы, от кэша и т.д. Если обобщить, то главное не превышать область кэшей процессора, вот про регистры в таких крупных размерах речи и не идет, конечно. Так что можете смело брать ровно столько, сколько на L1 кэш влезет. Пока выше не залезете, то и не попадете в область оперативной памяти, а следовательно не уйдете вниз по кривой перформанса.
Я бы советовал батчить файл на 64кб и не проводить раннюю оптимизацию, написать сначала как есть, а потом уже заниматься такой микро-оптимизацией. Не думаю, что будет большой разлет по перфомансу.
4ainik, вот, например, ответ на стак-оверфлоу, полностью солидарен с моим ответом.
Очевидно второй вариант будет хуже в плане производительности, хотя и вполне уместен для например терминала 🙂
А конкретно для условий описанных ТС, я бы выбрал максимальный размер буфера равный 64к.
4ainik, мой ответ выше и говорит использовать 64кб, тем самым не выходить за рамки кэша, какой смысл смотреть на результирующий график при таких буферах, если мы говорим использовать одно и тоже?
Я бы предложил ему выйти за размер кэша при батчинге файла на 10гб и вот тогда он почует разницу.
Или вы мне сейчас хотите сказать, что большинство практик для перформанса, типа inline методов/unroll циклов и выравнивания структур по полям полный бред, потому что мы не знаем, что там внутри? А зря, потому что они как раз нацелены на то, что мы догадываемся, что там внутри и пытаемся сделать лучше.
при копировании файла путем перебора его через внутренний буфер? У вас буфер, это что такое? Правильно, переменная. А где она хранится? Правильно, в кэше процессора, а далее в регистрах.
разница очень даже большая, сколько будут эти данные там храниться и будут ли вообще они там храниться.
Будут ли они вообще там храниться? А как вы себе это представляете? Данные, если мы с ними работаем, процессор вообще никак не обойдут, хоть ты лопни, но такого не будет.
4ainik, в регистр лезут переменные из кэша, поделенные на размерность этого регистра, то есть по 64бита и 32бита.
Зачем мне здесь кэш L1 процессора? buf это переменная, которая находится либо стеке (а это ОЗУ), либо выделена из «кучи», что так же является ОЗУ
Да не знает процессор о вашей ОЗУ, у него есть память на регистрах. Все взаимодействие с данными происходит именно там, я это уже пытаюсь объяснить час.
но очень большая, такая ни в какой «регистр» процессора НЕ влезет
А куда она влезет тогда? Где процессор с ней будет общаться? Из оперативной памяти напрямую? Вы в своем уме? Она чанками раскидывается на регистры из кэша.
Никита, ээээ, тут есть несколько моментов.
1) современные жесткие диски обладают большой скоростью чтения/записи в зависимости от модели диска и интерфейса он может выдавать данные со скоростью 100МБайт/сек и более
2) современные ОС умеют очень хорошо кешировать данные в оперативной памяти, вполне себе могут закешировать весь файл целиком. Обычно это легко заметить при чтении файла, в первый раз он читается существенно дольше, последующих.
Не знаю как вы проводили тесты, но тесты на файлах размером меньше 1Гб практически не представляют полезной информации.
ЗЫ: График в данном случае показательнее цифр.
ЗЫ2: Какой у вас жесткий диск? уж не SSD?
ЗЫ3: Исходный код программы в студию 🙂
Тонкая Настройка TCP
Слишком часто разработчики винят недостаточную производительность сети, хотя на самом деле зачастую причина в неправильно настроенном программном обеспечении. В этой статье описаны некоторые утилиты для анализа и настройки сети, которые позволяют разработчикам оптимизировать свои приложения для оптимизации сетевых возможностей.
Как-то раз мой друг Боб пришел ко мне с вопросом. Он написал программу на Java, которая копировала 100 МБ файлы с его компьютера под управлением Windows XP в его офисе на Linux-сервер в региональный офис компании. В обоих офисах используются 100Мбит сети Ethernet, соединенные через 155Mbps VPN канал. Однако он был очень неприятно удивлен тем, что измеренная скорость передачи была ниже 4Мбит, и попросил меня объяснить причину такого поведения.
В результате я написал эту статью, чтобы объяснить причину такого поведения и что должен сделать Боб, чтобы максимально использовать пропускную способность своей сети. Слишком часто разработчики винят недостаточную производительность сети, хотя на самом деле зачастую причина в неправильно настроенном программном обеспечении. В этой статье описаны некоторые утилиты для анализа и настройки сети, которые позволяют разработчикам оптимизировать свои приложения для оптимизации сетевых возможностей.
Как Работает TCP
Чтобы достичь максимальной скорости, важно использовать оптимальный размер буфера для TCP сокета для используемого подключения. Если буферы слишком маленькие, окно перегрузки TCP некогда не откроется полностью, таким образом отправитель не сможет работать по полной. Если буферы слишком большие, отправитель попросту завалит получателя, что приведет к тому, что получатель просто будет резать пакеты и окно перегрузки выключится. Наиболее вероятна такая ситуация когда отправляющий хост по производительности лучше, чем получающий. Слишком большое окно на отправляющей стороне это не проблема, пока существует некоторый избыток памяти.
Рассчитываем Размер Буфера TCP
Предположим, что сеть не перегружена и пакеты в ней не теряются, тогда пропускная способность сети зависит прямо пропорционально от размера TCP буфера и сетевой задержки. Сетевая задержка есть не что иное, как количество времени, необходимое пакету для прохода через сеть. Чтобы сосчитать максимальную пропускную способность, нужно:
Пропускная способность = размер буфера / задержка
В обычной сети задержка между двумя офисами составит около 40ms, а в Windows XP размер буфера по умолчанию равен 17,520 байт. Значит, максимальная пропускная способность будет равна:
Размер буфера по умолчанию для Mac OS X установлен в 64K, таким образом, при использовании Mac OS X у Боба получилось бы лучше, однако были бы достигнуты далеко не 100Mbps, которые по идее должны быть.
(Люди, которые постоянно используют сеть, думают о битах в секунду, тогда как все оставшиеся думают о байтах, что часто приводит к путанице.)
Большинство экспертов по сетям соглашаются, что оптимальный размер буфера для определенной сети равен удвоенному произведению задержки и полосы пропускания:
Для сети Боба ping вернул RTT в 80ms. Это значит, что размер буфера TCP должен быть:
Боб знал скорость VPN канала компании, но часто вы не знаете о пропускной способности сетевого маршрута. Определить пропускную способность сети иногда очень сложно. На сегодняшний день самой большой пропускной способностью является 1Gbps (в США, Европе и Японии), получается, что узкое место это местные сети на обоих концах. В моей практике я встречал в основном офисы, где компьютеры объединены 100Mbps сетью Ethernet. Тогда имеем следующую картину: 100Mbps=12MBps, что, согласитесь, совсем неплохо.
Перенастройка размера буфера никак не повлияет на производительность в сетях, где регламентированная скорость составляет 10Mbps или ниже; например, с хостами, соединенными через DSL, кабельный модем, ISDN, или линию T1. Существует программа pathrate, которая выполняет хорошую работу: оценивает пропускную способность. Но она не позволяет проводить глубокий анализ полученных временных рядов. Например, не ставилась задача получать различные функции распределения, а так же недостаточен набор параметров, которые можно варьировать при проведении измерений. Программа работает только на платформе Linux и требует возможности логина на оба компьютера.
Устанавливаем размер буфера TCP
Итак, имеем две настройки, которые нужно оптимизировать: размер буфера TCP по умолчанию и максимальный размер буфера. С правами пользователя можно изменить размер буфера по умолчанию, но для изменения его максимального размера требуются права администратора. Заметьте, что большинство сегодняшних Unix-Like систем по умолчанию имеют значение максимального размера буфера TCP всего лишь 256K. В Windows нет максимального размера буфера по умолчанию, но администратор может его установить. Очень важно изменить размеры буферов у посылающей и принимающей машин. Изменение только отправляющего буфера не даст ничего, т.к. TCP согласовывает размер буфера с меньшим из двух. Это означает, что не обязательно устанавливать оптимальный размер буфера на отправляющей и принимающей машинах. Обычно делают следующее: устанавливают размер буфера на серверной стороне довольно большим (например 1,024K) и затем позволяют клиенту определить и установить «оптимальное» значение для данного сетевого маршрута. Чтобы установить размер буфера TCP, используйте метода setSendBufferSize и setReceiveBufferSize в Java, или вызов setsockopt в С. Ниже представлен пример установки размеров буфера ТСР в пределах приложения на Java:
А вот и пример на С:
Фрагмент кода на С, проверяющий текущий размер буфера:
Устанавливаем Максимальный Размер буфера TCP
Для большинства соединений невозможно увеличить предопределенный системой максимальный размер ТСР буфера. Например, возьмем соединение в 100Mbps между Калифорнией и Великобританией, время задержки RTT которого 150 мсек. Оптимальный размер буфера для такого соединения будет равен 1,9 МБ, что в 30 раз больше чем размер буфера по умолчанию и в 7,5 раз больше, чем максимальный размер буфера ТСР в Linux.
Устанавливайте максимальные размеры буферов таким образом, чтобы полностью использовать ресурсы соединения. В Windows не требуется вносить каких-либо изменений, как например максимальный размер буфера ТСР по умолчанию (GlobalMaxTcpWindowSize) не определяется. На моем сайте TCP Tuning Guide web site можно найти информацию о том, как установить максимальный размер буфера в других операционных системах.
От Теории к Практике
Наверняка сейчас у вас возник вопрос «А как же я могу осуществить все эти возможности в реальных условиях? Доверить ли пользователям установку размера буфера? Стоит ли подсчитать оптимальный размер буфера для пользователя? Или может вообще стоит установить больший буфер и больше не вспоминать об этом?»
Обычно, я предлагаю следующее для большинства приложений, ориентированных на высокоскоростную (более 40Mbps), с большой задержкой (RTT > 10ms) сеть. Ваш клиент должен запустить ping, чтобы определить RTT и затем просто принять пропускную способность, равную 100Mbps. Ping трафик блокируется некоторыми сайтами. В этом случае можно воспользоваться утилитой synack, которая использует ТСР вместо ICMP для определения RTT. Если ваши пользователи разбираются в сетях, то можно предоставить им самим самостоятельно выбирать размер TCP буфера. Не правильно тупо устанавливать большие размеры буферов для всех сетевых маршрутов, особенно если приложение могут запустить через медленные линии, такие как DSL или модемы.
Linux на Помощь
Наладка Сети
Обратите Внимание на Программу scp
Для копирования файлов через Интернет обычно пользуются программой scp. К сожалению, тонкая настройка ТСР не поможет пропускной способности >scp, потому что в scp используетсяOpenSSL, в котором используются статически определенные потоки буферов. Эти буферы действуют на пропускную способность сети как узкое место, особенно в сетях с длинной задержкой и высокими скоростями. Питсбургская страница Сверхвысокопроизводительного Центра High Performance SSH/SCP объясняет это более подробно и, кроме того, там имеется патч для OpenSSL, устраняющий эту проблему.
Тонкая Настройка TCP
Слишком часто разработчики винят недостаточную производительность сети, хотя на самом деле зачастую причина в неправильно настроенном программном обеспечении. В этой статье описаны некоторые утилиты для анализа и настройки сети, которые позволяют разработчикам оптимизировать свои приложения для оптимизации сетевых возможностей.
Как-то раз мой друг Боб пришел ко мне с вопросом. Он написал программу на Java, которая копировала 100 МБ файлы с его компьютера под управлением Windows XP в его офисе на Linux-сервер в региональный офис компании. В обоих офисах используются 100Мбит сети Ethernet, соединенные через 155Mbps VPN канал. Однако он был очень неприятно удивлен тем, что измеренная скорость передачи была ниже 4Мбит, и попросил меня объяснить причину такого поведения.
В результате я написал эту статью, чтобы объяснить причину такого поведения и что должен сделать Боб, чтобы максимально использовать пропускную способность своей сети. Слишком часто разработчики винят недостаточную производительность сети, хотя на самом деле зачастую причина в неправильно настроенном программном обеспечении. В этой статье описаны некоторые утилиты для анализа и настройки сети, которые позволяют разработчикам оптимизировать свои приложения для оптимизации сетевых возможностей.
Как Работает TCP
Чтобы достичь максимальной скорости, важно использовать оптимальный размер буфера для TCP сокета для используемого подключения. Если буферы слишком маленькие, окно перегрузки TCP некогда не откроется полностью, таким образом отправитель не сможет работать по полной. Если буферы слишком большие, отправитель попросту завалит получателя, что приведет к тому, что получатель просто будет резать пакеты и окно перегрузки выключится. Наиболее вероятна такая ситуация когда отправляющий хост по производительности лучше, чем получающий. Слишком большое окно на отправляющей стороне это не проблема, пока существует некоторый избыток памяти.
Рассчитываем Размер Буфера TCP
Предположим, что сеть не перегружена и пакеты в ней не теряются, тогда пропускная способность сети зависит прямо пропорционально от размера TCP буфера и сетевой задержки. Сетевая задержка есть не что иное, как количество времени, необходимое пакету для прохода через сеть. Чтобы сосчитать максимальную пропускную способность, нужно:
Пропускная способность = размер буфера / задержка
В обычной сети задержка между двумя офисами составит около 40ms, а в Windows XP размер буфера по умолчанию равен 17,520 байт. Значит, максимальная пропускная способность будет равна:
Размер буфера по умолчанию для Mac OS X установлен в 64K, таким образом, при использовании Mac OS X у Боба получилось бы лучше, однако были бы достигнуты далеко не 100Mbps, которые по идее должны быть.
(Люди, которые постоянно используют сеть, думают о битах в секунду, тогда как все оставшиеся думают о байтах, что часто приводит к путанице.)
Большинство экспертов по сетям соглашаются, что оптимальный размер буфера для определенной сети равен удвоенному произведению задержки и полосы пропускания:
Программа ping даст вам округленное время (round trip time — RTT) для сетевого соединения, что в два раза больше задержки. Формула принимает следующий вид:
Для сети Боба ping вернул RTT в 80ms. Это значит, что размер буфера TCP должен быть:
Боб знал скорость VPN канала компании, но часто вы не знаете о пропускной способности сетевого маршрута. Определить пропускную способность сети иногда очень сложно. На сегодняшний день самой большой пропускной способностью является 1Gbps (в США, Европе и Японии), получается, что узкое место это местные сети на обоих концах. В моей практике я встречал в основном офисы, где компьютеры объединены 100Mbps сетью Ethernet. Тогда имеем следующую картину: 100Mbps=12MBps, что, согласитесь, совсем неплохо.
Перенастройка размера буфера никак не повлияет на производительность в сетях, где регламентированная скорость составляет 10Mbps или ниже; например, с хостами, соединенными через DSL, кабельный модем, ISDN, или линию T1. Существует программа pathrate, которая выполняет хорошую работу: оценивает пропускную способность. Но она не позволяет проводить глубокий анализ полученных временных рядов. Например, не ставилась задача получать различные функции распределения, а так же недостаточен набор параметров, которые можно варьировать при проведении измерений. Программа работает только на платформе Linux и требует возможности логина на оба компьютера.
Устанавливаем размер буфера TCP
Итак, имеем две настройки, которые нужно оптимизировать: размер буфера TCP по умолчанию и максимальный размер буфера. С правами пользователя можно изменить размер буфера по умолчанию, но для изменения его максимального размера требуются права администратора. Заметьте, что большинство сегодняшних Unix-Like систем по умолчанию имеют значение максимального размера буфера TCP всего лишь 256K. В Windows нет максимального размера буфера по умолчанию, но администратор может его установить. Очень важно изменить размеры буферов у посылающей и принимающей машин. Изменение только отправляющего буфера не даст ничего, т.к. TCP согласовывает размер буфера с меньшим из двух. Это означает, что не обязательно устанавливать оптимальный размер буфера на отправляющей и принимающей машинах. Обычно делают следующее: устанавливают размер буфера на серверной стороне довольно большим (например 1,024K) и затем позволяют клиенту определить и установить «оптимальное» значение для данного сетевого маршрута. Чтобы установить размер буфера TCP, используйте метода setSendBufferSize и setReceiveBufferSize в Java, или вызов setsockopt в С. Ниже представлен пример установки размеров буфера ТСР в пределах приложения на Java:
Хорошей идеей будет вызвать getSendBufferSize (или getReceiveBufferSize) после установки размера буфера. Таким образом, мы удостоверимся, что наша ОС поддерживает буферы таких размеров. Вызов setsockopt не вернет ошибку, если вы используете значение, большее чем максимальный размер буфера, но попросту будет использовать максимальный размер вместо значения, которое установили вы. Linux загадочным образом удваивает значение, которое вы передаете для размера буфера, так что когда вы делаете getSendBufferSize / getReceiveBufferSize и видите в два раза больше, чем указали, не волнуйтесь — для Linux это «нормально».
А вот и пример на С:
Фрагмент кода на С, проверяющий текущий размер буфера:
Устанавливаем Максимальный Размер буфера TCP
Для большинства соединений невозможно увеличить предопределенный системой максимальный размер ТСР буфера. Например, возьмем соединение в 100Mbps между Калифорнией и Великобританией, время задержки RTT которого 150 мсек. Оптимальный размер буфера для такого соединения будет равен 1,9 МБ, что в 30 раз больше чем размер буфера по умолчанию и в 7,5 раз больше, чем максимальный размер буфера ТСР в Linux.
Устанавливайте максимальные размеры буферов таким образом, чтобы полностью использовать ресурсы соединения. В Windows не требуется вносить каких-либо изменений, как например максимальный размер буфера ТСР по умолчанию (GlobalMaxTcpWindowSize) не определяется. На моем сайте TCP Tuning Guide web site можно найти информацию о том, как установить максимальный размер буфера в других операционных системах.
От Теории к Практике
Наверняка сейчас у вас возник вопрос «А как же я могу осуществить все эти возможности в реальных условиях? Доверить ли пользователям установку размера буфера? Стоит ли подсчитать оптимальный размер буфера для пользователя? Или может вообще стоит установить больший буфер и больше не вспоминать об этом?»
Обычно, я предлагаю следующее для большинства приложений, ориентированных на высокоскоростную (более 40Mbps), с большой задержкой (RTT > 10ms) сеть. Ваш клиент должен запустить ping, чтобы определить RTT и затем просто принять пропускную способность, равную 100Mbps. Ping трафик блокируется некоторыми сайтами. В этом случае можно воспользоваться утилитой synack, которая использует ТСР вместо ICMP для определения RTT. Если ваши пользователи разбираются в сетях, то можно предоставить им самим самостоятельно выбирать размер TCP буфера. Не правильно тупо устанавливать большие размеры буферов для всех сетевых маршрутов, особенно если приложение могут запустить через медленные линии, такие как DSL или модемы.
Linux на Помощь
Начиная с версии 2.4, в Linux добавлена возможность автоподстройки ТСР буфера отправителя. Это означает, что отправителю больше не нужно задумываться о вызове setsockopt(). Однако все еще следует выполнять setsockopt() на стороне получателя, и вам придется подкорректировать максимальный размер буфера при автоподстройке, что по умолчанию составляет лишь 128 кБ. Начиная с Linux 2.6.7, была добавлена функция автоподстройки для серверной стороны, таким образом вам не нужно больше думать о получателе. Свершилось! К несчастью, максимальный размер буфера ТСР все еще маленький — но хотя бы теперь это проблема системного администрирования, а не программиста.
Мои начальные результаты довольно-таки внушительные. После увеличения максимальных буферов ТСР, при соединении в 1Gbps через США (RTT = 67ms), производительность с 10Mbps при использовании Linux 2.4 поднялась до 700Mbps при использовании Linux 2.6.12, ускорение в 70 раз! На соединении из Калифорнии в Великобританию (RTT = 150 мсек), скорость с 4Mbps на Linux 2.4 выросла до 560Mbps — ускорение в 140 раз. Этого удалось достичь всего лишь увеличением максимального размера буфера ТСР.
В Linux 2.6 кроме того включены некоторые улучшения ТСР, что означает, что скорость можно увеличить еще в несколько раз. Особенно то, что в Linux 2.6 теперь используется алгоритм контроля перегрузки BIC (BIC — bus interface controller, контроллер магистрального интерфейса), который задумывался для увеличения производительности ТСР при использовании высокоскоростных линий и большими задержками. Ручная подстройка Linux 2.4 при использовании тех же соединений дает пропускную способность в 300Mbps через США и 70Mbps до Великобритании. Надеюсь, в скором времени все эти прелести появятся в Windows.
Наладка Сети
Internet2’s Network Diagnostic Tool (NDT) — отличная утилита, предназначенная для определения проблем с перегрузкой и дуплексом. NDT это Java аплет, который можно запустить с одного из NDT серверов.
Обратите Внимание на Программу scp
Для копирования файлов через Интернет обычно пользуются программой scp. К сожалению, тонкая настройка ТСР не поможет пропускной способности >scp, потому что в scp используетсяOpenSSL, в котором используются статически определенные потоки буферов. Эти буферы действуют на пропускную способность сети как узкое место, особенно в сетях с длинной задержкой и высокими скоростями. Питсбургская страница Сверхвысокопроизводительного Центра High Performance SSH/SCP объясняет это более подробно и, кроме того, там имеется патч для OpenSSL, устраняющий эту проблему.