Π§ΡΠΎ Π·Π½Π°ΡΠΈΡ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ β ΡΡΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π²ΠΈΠ΄Π° \(ax^2+bx+c\) (\(aβ 0\)).
ΠΡΠΈΠΌΠ΅ΡΡ Π½Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ΠΎΠ²:
ΠΠΎΡΠ΅Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π°:
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ \(x\), ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΠΎΠ»Ρ, Π½Π°Π·ΡΠ²Π°ΡΡ Π΅Π³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΌ.
ΠΡΠΈΠΌΠ΅Ρ:
Π£ ΡΡΠ΅Ρ
ΡΠ»Π΅Π½Π° \(x^2-2x+1\) ΠΊΠΎΡΠ΅Π½Ρ \(1\), ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ \(1^2-2Β·1+1=0\)
Π£ ΡΡΠ΅Ρ
ΡΠ»Π΅Π½Π° \(x^2+2x-3\) ΠΊΠΎΡΠ½ΠΈ \(1\) ΠΈ \(-3\), ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ \(1^2+2-3=0\) ΠΈ \((-3)^2-6-3=9-9=0\)
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ: Π΅ΡΠ»ΠΈ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠΎΡΠ½ΠΈ Π΄Π»Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(x^2-2x+1\), ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Π³ΠΎ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ \(x^2-2x+1=0\).
ΠΠΎΡΠΎΠ²ΠΎ. ΠΠΎΡΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ \(1\).
Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ \(ax^2+bx+c\) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠ°ΠΊ \(a(x-x_1)^2\), Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(ax^2+bx+c=0\) ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ \(ax^2+bx+c\) Π½Π΅ ΡΠ°ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(ax^2+bx+c=0\) ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ΠΎΠ² \(x^2+x+4\) ΠΈ \(-5x^2+2x-1\) β Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΡΡΠΎΠΌΡ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΈΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.
ΠΡΠΈΠΌΠ΅Ρ. Π Π°Π·Π»ΠΎΠΆΠΈΡΠ΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ \(2x^2-11x+12\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(2x^2-11x+12=0\)
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΎΡΠ²Π΅Ρ, ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ, Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ: \((2x-3)(x-4)\).
ΠΡΠΈΠΌΠ΅Ρ. (ΠΠ°Π΄Π°Π½ΠΈΠ΅ ΠΈΠ· ΠΠΠ) ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ
ΡΠ»Π΅Π½ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ \(5x^2+33x+40=5(x++ 5)(x-a)\). ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ \(a\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac<-33-17><10>=-5\)
\(x_2=\frac<-33+17><10>=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
ΠΡΠ²Π΅Ρ: \(-1,6\)
Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
ΠΠ°ΠΊ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½
Π ΠΏΡΠΎΡΠ»ΡΡ ΡΡΠΎΠΊΠ°Ρ ΠΌΡ ΡΠ΅ΡΠ°Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ±ΡΠΈΠΉ Π²ΠΈΠ΄ ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π²ΡΠ³Π»ΡΠ΄Π΅Π» ΡΠ°ΠΊ:
ΠΠ΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΡΡ ΡΠ»Π΅Π½ΠΎΠΌ.
ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΠΎΠ»Π΅Π·Π½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΏΠΎΠΈΡΠΊ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π°.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΡΠ½ΠΈ x1 ΠΈ x2 ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΠΎΠ΄ΡΡΓ‘Π²ΠΈΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈ ΡΡΠ°Π½Π΅Ρ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ:
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π½ΡΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ Π³ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ΄Π΅ Π»Π΅Π²Π°Ρ ΡΠ°ΡΡΡ β ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½.
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½:
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π°. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΄Π°Π½Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ½ΡΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΡΡΡΠ½ΠΎΠ³ΠΎ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°. Π§ΡΠΎΠ±Ρ ΡΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡ Π²ΡΠ΅ΠΌΡ, Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠΏΡΡΡΠΈΡΡ:
ΠΡΠ»ΠΈ a ΡΠ°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ (ΠΊΠ°ΠΊ Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅), ΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΏΠΎΠΊΠΎΡΠΎΡΠ΅:
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ Π»ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π³ΠΎΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½:
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΄Π°Π½Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠ°ΠΊ ΠΈ Π² ΠΏΡΠΎΡΠ»ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ½ΡΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΡΡΡΠ½ΠΎΠ³ΠΎ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°:
ΠΡΠΏΠΎΠ»Π½ΠΈΠΌ ΠΏΡΠΎΠ²Π΅ΡΠΊΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΠ°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π³ΠΎΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΡΠ»ΠΈ ΠΌΡ Π²ΡΡ ΡΠ΄Π΅Π»Π°Π»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ, ΡΠΎ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΎΠ»ΡΡΠΈΡΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ 2x 2 β 14x + 24
ΠΠ°ΠΊ ΡΡΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ
Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ, Π΅ΡΠ»ΠΈ Π²ΠΌΠ΅ΡΡΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° ΠΏΠΎΠ΄ΡΡΓ‘Π²ΠΈΡΡ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ° ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ.
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅:
ΠΡΠΏΠΎΠΌΠΈΠ½Π°Π΅ΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠΌ, ΡΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ° ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ c ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ° Π²ΡΡΠ°ΠΆΠ°ΡΡ Π½Π΅ Π½ΡΠΆΠ½ΠΎ β ΠΎΠ½Π° ΡΠΆΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½Π°. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π»Π΅Π²ΡΡ ΠΈ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ b ΠΈ c Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ x 2 + bx + c
Π Π°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΠ°ΠΌ Π³Π΄Π΅ ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ:
Π ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅ΠΌΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²ΠΊΠΈ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠ΅ΡΠ²ΡΠΉ ΡΠ»Π΅Π½ ΡΠΎ Π²ΡΠΎΡΡΠΌ, Π° ΡΡΠ΅ΡΠΈΠΉ Ρ ΡΠ΅ΡΠ²ΡΡΡΡΠΌ:
ΠΠ°Π»Π΅Π΅ Π·Π°ΠΌΠ΅ΡΠ°Π΅ΠΌ, ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ( x β x1 ) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠΈΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΌ. ΠΡΠ½Π΅ΡΠ΅ΠΌ Π΅Π³ΠΎ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ:
ΠΠΎ ΡΡΠΎ Π±ΡΠ» ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠΌ. Π Π½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΡΡΠΈΡΡ.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π° Π½Π΅ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΡΠΎ ΠΊΠ°ΠΊ ΡΠ°Π· ΡΠΎΡ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a
ΠΡΠΎ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ° ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. Π ΡΡΠΎΠ±Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + bx + c = 0 ΡΡΠ°Π»ΠΎ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠΌ, Π½ΡΠΆΠ½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π΅ Π΅Π³ΠΎ ΡΠ°ΡΡΠΈ Π½Π° a
ΠΠ°Π»Π΅Π΅ ΡΡΠΎΠ±Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ
ΡΠ»Π΅Π½ Π²ΠΈΠ΄Π° ax 2 + bx + c ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, Π½ΡΠΆΠ½ΠΎ Π²ΠΌΠ΅ΡΡΠΎ b ΠΈ c ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ°. ΠΠΎ Π² ΡΡΠΎΡ ΡΠ°Π· Π½Π°ΠΌ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΈ
Π ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅ΠΌΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²ΠΊΠΈ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠ΅ΡΠ²ΡΠΉ ΡΠ»Π΅Π½ ΡΠΎ Π²ΡΠΎΡΡΠΌ, Π° ΡΡΠ΅ΡΠΈΠΉ Ρ ΡΠ΅ΡΠ²ΡΡΡΡΠΌ:
ΠΠ°Π»Π΅Π΅ Π·Π°ΠΌΠ΅ΡΠ°Π΅ΠΌ, ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ x β x1 ΡΠΎΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠΈΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΌ. ΠΡΠ½Π΅ΡΠ΅ΠΌ Π΅Π³ΠΎ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ:
Π‘ΠΊΠΎΠ±ΠΊΠΈ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅:
ΠΡΠΈ ΡΡΠΎΠΌ Π΅ΡΠ»ΠΈ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΊΠΎΡΠΎΡΠΊΠΈΠΉ ΠΎΡΠ²Π΅Ρ, ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ (x + 2) 2 ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ (x + 2)(x + 2) ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π΅Π½ (x + 2)
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½:
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π°:
ΠΠΎ Π²ΡΠΎΡΡΡ ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ:
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½:
Π£ΠΏΠΎΡΡΠ΄ΠΎΡΠΈΠΌ ΡΠ»Π΅Π½Ρ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΡΡ ΠΏΠ΅ΡΠ²ΡΠΌ, ΡΡΠ΅Π΄Π½ΠΈΠΉ β Π²ΡΠΎΡΡΠΌ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½ β ΡΡΠ΅ΡΡΠΈΠΌ:
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π°:
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ:
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π΅ΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π° ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ 3
Π’Π΅ΠΏΠ΅ΡΡ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΠΎΠ½ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°ΡΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Π² Π»ΡΠ±ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅. Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ 3 Π½Π° Π²ΡΠΎΡΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ. ΠΡΠΎ ΠΏΠΎΠ·Π²Γ³Π»ΠΈΡ ΠΈΠ·Π±Π°Π²ΠΈΡΡΡΡ ΠΎΡ Π΄ΡΠΎΠ±ΠΈ Π² ΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΊΠ°Ρ :
ΠΡΠΈΠΌΠ΅Ρ 3. Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½:
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π°:
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ
ΡΠ»Π΅Π½ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠΌΠΌΠ° Π΅Π³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° Π΄ΡΠΎΠ±ΠΈ , Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ β Π΄ΡΠΎΠ±ΠΈ
ΠΡΡΠ°Π·ΠΈΠΌ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ x2 ΠΈ ΡΡΠ°Π·Ρ ΠΏΠΎΠ΄ΡΡΓ‘Π²ΠΈΠΌ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΠΎ Π²ΡΠΎΡΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π²ΠΌΠ΅ΡΡΠΎ x2
ΠΡΠΈΠΌΠ΅Ρ 5. Π Π°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΡΡ ΡΠ»Π΅Π½:
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π΄Π°Π½Π½ΡΠΉ ΡΡΡΡ
ΡΠ»Π΅Π½ Π² ΡΠ΄ΠΎΠ±Π½ΡΠΉ Π΄Π»Ρ Π½Π°Ρ Π²ΠΈΠ΄. ΠΡΠ»ΠΈ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»Π΅Π½Π΅ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ . ΠΡΠ»ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ
. Π’ΠΎ Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a ΡΡΠ°Π½Π΅Ρ ΡΠ°Π²Π½ΡΠΌ
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π² ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ. Π’Π°ΠΊ ΠΏΡΠΎΡΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΡΠΊΠ°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡ ΡΠ»Π΅Π½Π°:
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ:
ΠΠ°Π΄Π°Π½ΠΈΡ Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠΎΠ½ΡΠ°Π²ΠΈΠ»ΡΡ ΡΡΠΎΠΊ?
ΠΡΡΡΠΏΠ°ΠΉ Π² Π½Π°ΡΡ Π½ΠΎΠ²ΡΡ Π³ΡΡΠΏΠΏΡ ΠΠΊΠΎΠ½ΡΠ°ΠΊΡΠ΅ ΠΈ Π½Π°ΡΠ½ΠΈ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΡ ΠΎ Π½ΠΎΠ²ΡΡ
ΡΡΠΎΠΊΠ°Ρ
ΠΠΎΠ·Π½ΠΈΠΊΠ»ΠΎ ΠΆΠ΅Π»Π°Π½ΠΈΠ΅ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°ΡΡ ΠΏΡΠΎΠ΅ΠΊΡ?
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠΉ ΠΊΠ½ΠΎΠΏΠΊΡ Π½ΠΈΠΆΠ΅
ΠΠ°ΠΊ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½: ΡΠΎΡΠΌΡΠ»Π°
Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΠ½ΠΎΠ³Π΄Π° ΠΊΠ°ΠΆΠ΅ΡΡΡ Π·Π°ΠΏΡΡΠ°Π½Π½ΡΠΌ. ΠΠΎ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ ΡΠ»ΠΎΠΆΠ½ΠΎ, Π΅ΡΠ»ΠΈ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΏΠΎΡΠ°Π³ΠΎΠ²ΠΎ. Π ΡΡΠ°ΡΡΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΊΠ°Π·Π°Π½ΠΎ, ΠΊΠ°ΠΊ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½.
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΠ½ΠΎΠ³ΠΈΠΌ Π½Π΅ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΊΠ°ΠΊ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½, ΠΈ Π΄Π»Ρ ΡΠ΅Π³ΠΎ ΡΡΠΎ Π΄Π΅Π»Π°Π΅ΡΡΡ. Π‘Π½Π°ΡΠ°Π»Π° ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ, ΡΡΠΎ ΡΡΠΎ Π±Π΅ΡΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ΅ Π·Π°Π½ΡΡΠΈΠ΅. ΠΠΎ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ Π΄Π΅Π»Π°Π΅ΡΡΡ ΠΏΡΠΎΡΡΠΎ ΡΠ°ΠΊ. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½ΡΠΆΠ½ΠΎ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ.
ΠΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, ΠΈΠΌΠ΅ΡΡΠΈΠΉ Π²ΠΈΠ΄ β axΒ²+bx+c, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ΠΎΠΌ. Π‘Π»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Β«aΒ» Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ. ΠΠ° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΈΠ½ΠΎΠ³Π΄Π° Π³ΠΎΠ²ΠΎΡΡΡ ΠΈ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ: ΠΊΠ°ΠΊ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎ! ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΈΠ·-Π·Π° ΡΠ°ΠΌΠΎΠΉ Π΅Π³ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°. Π ΡΡΠ΅Ρ ΡΠ»Π΅Π½ΠΎΠΌ ΠΈΠ·-Π·Π° 3-Ρ ΡΠΎΡΡΠ°Π²Π½ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ .
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π΄ΡΡΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ²:
Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
Π‘Π½Π°ΡΠ°Π»Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΡΡΡ ΠΊ Π½ΡΠ»Ρ, Π·Π°ΡΠ΅ΠΌ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ x1 ΠΈ x2. ΠΠΎΡΠ½Π΅ΠΉ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ Π±ΡΡΡ, ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°Π»ΠΈΡΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΡ. ΠΠ³ΠΎ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ: D=bΒ²-4ac.
ΠΡΠ»ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ D ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ β ΠΊΠΎΡΠ½Ρ Π΄Π²Π°. ΠΡΠ»ΠΈ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ»ΡΡ Π½ΠΎΠ»Ρ β ΠΊΠΎΡΠ΅Π½Ρ ΠΎΠ΄ΠΈΠ½. ΠΠΎΡΠ½ΠΈ ΡΠΎΠΆΠ΅ Π²ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅.
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ°Π·Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΡΡ.
ΠΡΠ»ΠΈ D ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ:
ΠΡΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΡΠΈΡΠ°ΡΡ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ Π½ΡΠΆΠ½ΠΎ.
ΠΡΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎ! ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΈ ΡΠ΅ΠΌΡ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° Π΄Π»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ
Π ΠΈΠ½ΡΠ΅ΡΠ½Π΅ΡΠ΅ Π΅ΡΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ. Π‘ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. ΠΠ° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΡΡΡΡΠ°Ρ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ°Π³ΠΎΠ²ΠΎ. Π’Π°ΠΊΠΈΠ΅ ΡΠ΅ΡΠ²ΠΈΡΡ ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ Π»ΡΡΡΠ΅ ΠΏΠΎΠ½ΡΡΡ ΡΠ΅ΠΌΡ, Π½ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°ΡΠ°ΡΡΡΡ Ρ ΠΎΡΠΎΡΠΎ Π²Π½ΠΈΠΊΠ½ΡΡΡ.
ΠΡΠ»ΠΈ ΡΠ΅ΠΌΠ° ΠΏΠΎΠ½ΡΡΠ½Π°, ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠΎΠ»Π΅Π·Π½ΠΎΠ΅ Π²ΠΈΠ΄Π΅ΠΎ: Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
ΠΡΠΈΠΌΠ΅ΡΡ
ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌ ΠΏΡΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΏΡΠΎΡΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΊΠ°ΠΊ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
ΠΡΠΈΠΌΠ΅Ρ 1
ΠΠ΄Π΅ΡΡ Π½Π°Π³Π»ΡΠ΄Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ Π΄Π²Π° x, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ D ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ. ΠΡ ΠΈ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΎΡΠΌΡΠ»Ρ. ΠΡΠ»ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅, Π·Π½Π°ΠΊ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ.
ΠΠ°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΡΠΎΡΠΌΡΠ»Π° ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ: a(x-x1)(x-x2). Π‘ΡΠ°Π²ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ: (x+3)(x+2/3). ΠΠ΅ΡΠ΅Π΄ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π½Π΅Ρ ΡΠΈΡΠ»Π°. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠ°ΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ°, ΠΎΠ½Π° ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ.
ΠΡΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎ! ΠΠ°ΠΊ ΡΠ°ΡΠΊΡΡΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ ΡΡΠΎ ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅
ΠΡΠΈΠΌΠ΅Ρ 2
ΠΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ Π½Π°Π³Π»ΡΠ΄Π½ΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΈΠΌΠ΅ΡΡΠ΅Π΅ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π΅ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅:
ΠΡΠΈΠΌΠ΅Ρ 3
Π‘Π½Π°ΡΠ°Π»Π° Π²ΡΡΠΈΡΠ»ΠΈΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΠΊΠ°ΠΊ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΠ»ΡΡΠ°ΡΡ .
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΠΎΡΠ»Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΡΡΠΎΠΈΡ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. ΠΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΎΡΠ²ΠΈΡΡΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½.
ΠΠ»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π»ΡΠ΄ΠΈ ΡΠ°ΠΊ ΠΈ Π½Π΅ ΡΠΌΠΎΠ³Π»ΠΈ ΠΏΠΎΠ΄ΡΡΠΆΠΈΡΡΡΡ Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ. ΠΠΎΠΆΠ½ΠΎ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠΏΠΎΡΠΎΠ± ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅.
ΠΡΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎ! Π£ΡΠΎΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ: ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π½ΠΎΠ»Ρ Π³Π»Π°Π²Π½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ
ΠΠ°Π»Π΅Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌ ΠΏΠΎΠ΄Π±ΠΎΡ ΠΈ ΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ ΡΠ½Π°ΡΠ°Π»Π°:
ΠΠ½Π°ΡΠΈΡ, ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ x2+3x-10 Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: (x-2)(x+5).
ΠΠ°ΠΆΠ½ΠΎ! Π‘ΡΠΎΠΈΡ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»Π΅Π΄ΠΈΡΡ Π·Π° ΡΠ΅ΠΌ, ΡΡΠΎΠ±Ρ Π½Π΅ ΠΏΠ΅ΡΠ΅ΠΏΡΡΠ°ΡΡ Π·Π½Π°ΠΊΠΈ.
Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π°
ΠΡΠ»ΠΈ Β«aΒ» Π±ΠΎΠ»ΡΡΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΡ, Π½Π°ΡΠΈΠ½Π°ΡΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ. ΠΠΎ Π²ΡΠ΅ Π½Π΅ ΡΠ°ΠΊ ΡΡΡΠ΄Π½ΠΎ, ΠΊΠ°ΠΊ ΠΊΠ°ΠΆΠ΅ΡΡΡ.
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, Π½ΡΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ ΡΡΠΎ-Π½ΠΈΠ±ΡΠ΄Ρ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° ΡΠΊΠΎΠ±ΠΊΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π°Π½ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅: 3xΒ²+9x-30. ΠΠ΄Π΅ΡΡ Π²ΡΠ½ΠΎΡΠΈΡΡΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΡ ΡΠΈΡΠ»ΠΎ 3:
3(xΒ²+3x-10). Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½. ΠΡΠ²Π΅Ρ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: 3(x-2)(x+5)
Π‘Ρ Π΅ΠΌΠ° ΠΌΠ°Π»ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ. ΠΡΡΡ Π»ΠΈΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π½ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ². ΠΠΎΠΏΡΡΡΠΈΠΌ, Π΄Π°Π½ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅: 2xΒ²+7x+3. ΠΡΠ²Π΅Ρ ΡΠ°ΠΊΠΆΠ΅ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² 2-Ρ ΡΠΊΠΎΠ±ΠΊΠ°Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΡ (_)(_). ΠΠΎ 2-Ρ ΡΠΊΠΎΠ±ΠΊΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ x, Π° Π² 1-Ρ ΡΠΎ, ΡΡΠΎ ΠΎΡΡΠ°Π»ΠΎΡΡ. ΠΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: (2x_)(x_). Π ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ°Ρ ΡΡ Π΅ΠΌΠ°.
Π§ΠΈΡΠ»ΠΎ 3 Π΄Π°ΡΡ ΡΠΈΡΠ»Π°:
Π Π΅ΡΠ°Π΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ Π²Π°ΡΠΈΠ°Π½Ρ. ΠΠ½Π°ΡΠΈΡ, ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 2xΒ²+7x+3 Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: (2x+1)(x+3).
ΠΡΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎ! Π‘ΡΠΈΡΠ°Π΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ: ΠΊΠ°ΠΊ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΡΠ΅Π½Ρ ΠΎΡ ΡΡΠΌΠΌΡ ΠΈ ΡΠΈΡΠ»Π°
ΠΡΡΠ³ΠΈΠ΅ ΡΠ»ΡΡΠ°ΠΈ
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°. ΠΡΠΈ Π²ΡΠΎΡΠΎΠΌ ΡΠΏΠΎΡΠΎΠ±Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ. ΠΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ Π² ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅ΡΡΠ΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
Π‘ΡΠΎΠΈΡ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΠΎΠ²Π°ΡΡΡΡ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΎΡΠΌΡΠ» Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»ΠΎ ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ.
ΠΠΎΠ»Π΅Π·Π½ΠΎΠ΅ Π²ΠΈΠ΄Π΅ΠΎ: ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
ΠΡΠ²ΠΎΠ΄
ΠΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π»ΡΠ±ΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. ΠΠΎ Π»ΡΡΡΠ΅ ΠΎΠ±Π° ΠΎΡΡΠ°Π±ΠΎΡΠ°ΡΡ Π΄ΠΎ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΌΠ°. Π’Π°ΠΊΠΆΠ΅ Π½Π°ΡΡΠΈΡΡΡΡ Ρ ΠΎΡΠΎΡΠΎ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Ρ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΠΌ, ΠΊΡΠΎ ΡΠΎΠ±ΠΈΡΠ°Π΅ΡΡΡ ΡΠ²ΡΠ·Π°ΡΡ ΡΠ²ΠΎΡ ΠΆΠΈΠ·Π½Ρ Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΎΠΉ. ΠΠ° ΡΡΠΎΠΌ ΡΡΡΠΎΡΡΡΡ Π²ΡΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΌΡ.