Что значит прямо пропорционально и обратно пропорционально в математике
Урок 23 Бесплатно Прямая и обратная пропорциональные зависимости
На этом уроке мы рассмотрим, что такое прямая и обратная пропорциональные зависимости, научимся оформлять и решать задачи с помощью пропорции, устанавливая пропорциональную зависимость между величинами в ней, рассмотрим примеры задач на прямую и обратную пропорциональную зависимость.
Прямая и обратная пропорциональность
Давайте сначала разберемся, что такое пропорциональность.
Зависимость величин друг от друга может быть прямой и обратной.
Отношение между величинами описываются прямой или обратной пропорциональностью.
Прямая пропорциональность выражается так: \(\mathbf
Обратная пропорциональность выражается так: \(\mathbf
x и y величины, зависящие друг от друга.
Пример
Если постоянно значение произведения, то множители зависят друг от друга обратно пропорционально.
По формуле видно, что площадь квадрата зависит от длины (ширины) его стороны, а длина стороны (ширина) зависит от его площади.
Какова эта зависимость, сейчас и рассмотрим.
Зависимость площади прямоугольника от длины при постоянном значении ширины является прямо пропорциональной зависимостью этих величин.
Зависимость площади прямоугольника от ширины при постоянном значении длины является прямо пропорциональной зависимостью этих величин.
Пусть одна клетка равна 1 см. Рассмотрим рисунок:
Ширина прямоугольника b постоянная величина
b = 4 см
a1 = 6 см
a2 = 7 см
Найдем площади прямоугольников S1 и S2
\(\mathbf
\(\mathbf
Вывод: при увеличении стороны прямоугольника увеличилась площадь прямоугольника.
Рассмотрим другой вариант зависимости
Зависимость одной из сторон прямоугольника от второй стороны при постоянном значении площади прямоугольника является обратно пропорциональной зависимостью. Пусть одна клетка равна 1 см
Площадь прямоугольника S постоянная величина
S = 24 см 2
b1 = 4 см
Увеличим высоту прямоугольника- сторону прямоугольника b1 на 2 см, получим
b2 = 6 см
Найдем ширину прямоугольника- сторону a2
Вывод: при увеличении одной стороны прямоугольника и постоянном значении площади, вторая сторона уменьшается.
Таким образом, мы подошли к основным понятиям пропорциональной зависимости. Чтобы было легко разобраться в несложных схемах ниже, мы дадим пояснение символам:
1) Две величины прямо пропорциональны друг другу, если при увеличении (уменьшении) одной величины в n количество раз, другая величина, зависящая от первой, так же увеличивается (уменьшается) в n количество раз.
2) Две величины обратно пропорциональны друг другу, если при увеличении (уменьшении) одной величины в n количество раз, другая величина, зависящая от первой, уменьшается (увеличивается) в n количество раз.
Примеров прямой и обратной пропорциональности множество.
Однако не все величины зависят друг от друга прямо пропорционально или обратно пропорционально, встречаются и более простые и более сложные зависимости величин.
Надо понимать, что даже если какие-нибудь две величины возрастают или убывают, то между ними не обязательно существует пропорциональная зависимость.
Например, с течением времени увеличивается возраст человека и его размер ноги, но эти величины не являются пропорциональными, так как при удвоении возраста размер ноги человека не удваивается
Пройти тест и получить оценку можно после входа или регистрации
Алгоритм решение задач с прямой и обратной пропорциональной зависимостью
Алгоритм решения задач на пропорциональную зависимость состоит из нескольких основных пунктов:
— Стрелки, которые направлены в одну сторону, обозначают прямую пропорциональную зависимость величин
— Стрелки, которые направлены в разные стороны, обозначают обратную пропорциональную зависимость величин.
5. Записать пропорцию, учитывая характер пропорциональности величин
6. Составить уравнение
7. Найти неизвестный член уравнения (искомую величину)
8. Записать ответ задачи
Важно помнить, что при составлении краткой записи задачи величины с одинаковыми единицами измерения записывают друг под другом.
Если между величинами прямая пропорциональная зависимость, то пропорция составляется точно в соответствии с краткой записью задачи.
Если между величинами обратная пропорциональная зависимость, то при составлении пропорции одноименные величины меняются местами в одном любом из столбцов таблицы (логической схемы) краткой записи задачи.
Другими словами, при прямо пропорциональной зависимости отношение значений одной величины равно отношению соответствующих значений другой величины.
При обратно пропорциональной зависимости отношение значений одной величины будет равно обратному отношению соответствующих значений другой величины.
Пройти тест и получить оценку можно после входа или регистрации
Математика. 6 класс
Конспект урока
Прямая и обратная пропорциональность. Решение задач
Перечень рассматриваемых вопросов:
Равенство двух отношений называют пропорцией.
Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.
Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.
Теоретический материал для самостоятельного изучения
Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.
Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.
Для решения задач на пропорциональную зависимость, удобно составить таблицу или сделать краткую запись условия.
Столбцы таблицы соответствуют наименованиям зависимых величин.
Строки таблицы соответствуют значениям величин при первом и втором измерении.
Одинаково направленные стрелки показывают прямо пропорциональную зависимость, противоположно направленные – обратно пропорциональную.
Поезд, скорость которого 55 км/ч, был в пути 5 часов. За сколько часов пройдёт этот же участок пути товарный поезд, скорость которого 45 км/ч?
При постоянном пути скорость и время движения обратно пропорциональны.
Допустим, товарный поезд пройдёт этот же путь со скоростью 45 км/ч за x ч.
Сделаем краткую запись условия.
Двигаясь с постоянной скоростью, велогонщик проезжает 40 метров за 3 с. Какой путь проедет велогонщик за 45 с?
При постоянной скорости путь прямо пропорционален времени движения.
Пусть х м проедет велогонщик за 45 с.
Сделаем краткую запись условия.
Усилие при восхождении на высоту 600 м равно усилию, требуемому для перехода 25 км по равнине. Турист поднялся в горы на 792 м. Какому расстоянию на равнине соответствует этот подъём?
Четыре программиста могут написать игру за 12 месяцев. За сколько месяцев эту работу могут выполнить три программиста?
Количество программистов и скорость написания игры – это обратно пропорциональная зависимость.
Разбор заданий тренировочного модуля
№ 1. Подстановка элементов в пропуски в тексте.
Подставьте нужные элементы в пропуски.
Пешеход шёл 3 часа со скоростью 8 км/ч. За сколько часов он пройдёт то же расстояние со скоростью 6 км/ч?
При фиксированном расстоянии время в пути и скорость – ______ пропорциональны.
Пусть _____ часов – пешеход идёт со скоростью 6 км/ч.
При фиксированном расстоянии время в пути и скорость – обратно пропорциональны.
Пусть х часов – пешеход идёт со скоростью 6 км/ч.
№ 2. Подстановка элементов в пропуски в таблице.
Поезд движется со скоростью 45 км/ч. Какое расстояние он пройдёт, если будет в пути 3 ч; 4 ч; 5 ч; 6 ч.
При постоянной скорости пройденный путь и время прямо пропорциональны. Скорость движения поезда 45 км/ч означает, что за 1 час поезд преодолевает расстояние в 45 км. Обозначим за x км – расстояние, которое поезд пройдёт за 3, 4, 5 и 6 часов.
Таким же способом находим расстояние, которое пройдёт поезд за 4, 5 и 6 часов, и подставляем соответствующие варианты в таблицу.
Математика. 6 класс
Конспект урока
Прямая и обратная пропорциональность
Перечень рассматриваемых вопросов:
Равенство двух отношений называют пропорцией.
Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.
Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.
Теоретический материал для самостоятельного изучения
Пусть ручка стоит пять рублей, составим таблицу для нахождения стоимости от одной до семи ручек.
Из таблицы видно, что пять ручек стоят в пять раз больше, чем одна ручка. Говорят, что стоимость покупки прямо пропорциональна количеству купленных ручек.
Стоимость покупки прямо пропорциональна количеству купленных ручек.
Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.
Цена двух ручек 10 руб. Сколько нужно заплатить за пятнадцать таких же ручек?
Стоимость покупки прямо пропорциональна количеству ручек.
Запишем кратко условие задачи:
Чтобы найти неизвестный средний член пропорции, нужно произведение её крайних членов разделить на известный средний член пропорции:
Ответ: 15 ручек стоят 75 рублей.
На 600 рублей хотят купить несколько одинаковых коробок конфет. Зависимость количества купленных коробок конфет от цены одной коробки задана в таблице:
С увеличением цены за одну коробку в несколько раз количество коробок конфет, которые можно купить, уменьшается во столько же раз.
Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.
Грузовая машина, двигаясь со скоростью 60 километров в час, доезжает от одного города до другого за 3 часа. За сколько часов это же расстояние преодолеет легковой автомобиль, если его скорость 90 километров в час?
При постоянном пути скорость и время движения обратно пропорциональны.
Запишем кратко условие задачи:
Ответ: легковой автомобиль преодолеет расстояние между городами за 2 часа.
Свойство прямо пропорциональных величин.
Отношение прямо пропорциональных величин всегда остаётся неизменным.
Величину этого отношения называют коэффициентом прямой пропорциональности.
5 – коэффициент прямой пропорциональности.
Свойство обратно пропорциональных величин: произведение обратно пропорциональных величин всегда остаётся неизменным.
100 руб. · 6 коробок = 200 руб. · 3 коробки = 600 руб. · 1 коробку = 600
60 км/ч · 3 ч = 90 · 2 ч = 180
Между двумя городами расстояние равно 32 км. На карте отрезок между ними равен 2 см. Найдите масштаб карты.
Расстояние на местности и отрезок на карте – прямо пропорциональная зависимость.
Обозначим х см на местности отрезок в 1 см на карте.
Разбор заданий тренировочного модуля
Для решения задачи нужно понять какая происходит зависимость между величинами. Зависимость между массой и объёмом прямо пропорциональная. Составим пропорцию и найдём её неизвестный член.
№ 2. Ввод с клавиатуры пропущенных элементов в текст.
Зависимость между расходом угля и периодом, на который этого угля хватит, – обратно пропорциональная. То есть чем больше мы сжигаем угля в день, тем на меньшее количество дней нам этого угля хватит.
Прямая и обратная пропорциональная зависимость
|
Математически это выглядит так:
4 : 2 = 50 : 25 или так: 2 : 4 = 25 : 50
Прямо пропорциональными величинами тут являются время работы станка и число изготовленных деталей.
Говорят: Число деталей прямо пропорционально времени работы станка.
Если две величины прямо пропорциональны, то отношения соответствующих величин равны. (В нашем примере — это отношение времени 1 к времени 2 = отношению количества деталей за время 1 к количеству деталей за время 2)
Обратная пропорциональность
|
Обратно пропорциональная зависимость часто встречается в задачах на скорость. Скорость и время являются обратно пропорциональными величинами. Действительно, чем быстрее движется объект, тем меньше времени у него уйдет на путь.
Например:
Примеры задач
Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени? |
Запишем краткое условие задачи:
Для перевозки груза потребовалось 24 машины грузоподъемностью 7,5 тонн. Сколько нужно машин грузоподъемностью 4,5 т, чтобы перевезти тот же груз? |
2 комментариев к записи « Прямая и обратная пропорциональная зависимость »
Спасибо. Ваш сайт очень помог с решением таких задач. В школьных учебниках плохо объясняют, а ваш сайт сразу помог во всём разобраться! ОГРОМНОЕ СПАСИБО.
Прямая и обратная пропорциональность
Всего получено оценок: 426.
Всего получено оценок: 426.
Прямая и обратная пропорциональность – это одна из основ математики и геометрии 6 класса. Причем, это та основа, знания которой пригодятся не только при решении задач, но и в реальной жизни: пропорциональны друг другу бывают физические величины, заработные платы и конфеты, купленные в магазине.
Что такое пропорция?
Пропорция – это взаимосвязь двух величин. То есть, если меняется одна величина, меняется и другая. Если одна величина пропорциональна другой, а друга пропорциональна третьей, то все эти величины связаны между собой. Разделяют прямую и обратную пропорцию. Дадим им определения и приведем наглядные примеры.
Прямая пропорция
Прямая пропорция – это взаимоотношение величин, при котором, увеличивая одну величину, мы автоматически увеличим другую. Самый простой пример это булочки в магазине и цена на них. Булочка в любом случае стоит 30 руб. Покупая одну штуку мы платим 30 руб.
Если увеличим размер покупки, то соразмерно возрастет и цена. Она не может не возрасти, ведь булочник не будет отдавать свой товар просто так. За 2 булочки мы заплатим 60 рублей, за 3 – 90 и так далее.
Если устанавливать зависимость между количеством булочек и ценой на них, то получится следующее отношение:
Цена булочек/количество=30/1=60/2 и так далее. Заметим, что всегда это отношение равно одному и тому же числу. В данном примере это число 30. Оно будет постоянным для любого варианта данной пропорции. Конкретно в данном примере это число является одновременно и ценой одной булочки.
Иными словами, для приведенного примера пропорциональность можно объяснить так: сколько бы булочек мы ни купили, все равно цена одной будет 30 рублей. Вот и все. В рамках математики говорят, что если коэффициент пропорциональности не меняется, то числа пропорциональны.
Для того, чтобы понять, изменяется коэффициент или нет, нужно просто поделить друг на друга числа этой пропорции и сравнить результат. То есть, взять сначала отношение цены одной булочки к ее количеству, а затем цены 30 булочек к их количеству. Коэффициент сохранит свое значение, значит эти числа прямопропорциональны.
Обратная пропорция
Существует также понятие обратной пропорции. Часто бывает так, что одна величина зависит от другой, но не прямопропорционально. Сравним две взаимосвязанные между собой величины. Например, мотоциклист залил в бак бензин. Чем меньше бензина остается в баке мотоциклиста, тем больше проехал водитель. Здесь на лицо обратная зависимость количества бензина и пройденного расстояния.
Как просто запомнить?
Есть 4 простые схемы запоминания темы, по две для каждого вида пропорциональности.
Для прямой пропорции всегда работает схема: «больше-больше» или «меньше-меньше». То есть при увеличении одной величины, увеличится и другая, или при уменьшении одной величины уменьшится другая.
Соответственно, для обратной пропорциональности наоборот: «больше-меньше» или «меньше-больше». То есть, чем больше одна величина, тем меньше другая и наоборот.
Что мы узнали?
Мы привели объяснение прямой и обратной пропорциональности. Вывели простые схемы для запоминания темы и обговорили понятные примеры.