Π§ΡΠΎ Π·Π½Π°ΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ 3 ΠΊΠ»Π°ΡΡ
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°)
Π Π°ΡΠΈΡΠΌΠ΅ΡΠΈΠΊΠ΅ ΠΏΠΎΠ΄ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ ΠΊΡΠ°ΡΠΊΡΡ Π·Π°ΠΏΠΈΡΡ ΡΡΠΌΠΌΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π·Π°ΠΏΠΈΡΡ 5*3 ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«5 ΡΠ»ΠΎΠΆΠΈΡΡ Ρ ΡΠΎΠ±ΠΎΠΉ 3 ΡΠ°Π·Π°Β», ΡΠΎ Π΅ΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΠΎ ΠΊΡΠ°ΡΠΊΠΎΠΉ Π·Π°ΠΏΠΈΡΡΡ Π΄Π»Ρ 5+5+5. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ, Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌΡΠ΅ ΡΠΈΡΠ»Π° β ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΡΠΌΠΈ ΠΈΠ»ΠΈ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΡΠΌΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π±Π»ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ.
ΠΠ°ΠΏΠΈΡΡ
ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅. ΠΠ½Π°ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΎ ΠΏΡΠΎΠΏΡΡΠΊΠ°ΡΡ, Π΅ΡΠ»ΠΈ ΡΡΠΎ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΡΡΠ°Π½ΠΈΡΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΌΠ΅ΡΡΠΎ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΠΈΡΡΡ
.
ΠΡΠ»ΠΈ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎ, ΡΠΎ ΡΠ°ΡΡΡ ΠΈΡ
ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠΎΡΠΈΠ΅ΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡ
ΡΠΈΡΠ΅Π» ΠΎΡ 1 Π΄ΠΎ 100 ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ ΠΊΠ°ΠΊ
Π Π±ΡΠΊΠ²Π΅Π½Π½ΠΎΠΉ Π·Π°ΠΏΠΈΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠΈΠΌΠ²ΠΎΠ» ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ:
Π‘ΠΌ. ΡΠ°ΠΊΠΆΠ΅
ΠΠΎΠ»Π΅Π·Π½ΠΎΠ΅
Π‘ΠΌΠΎΡΡΠ΅ΡΡ ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ «ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°)» Π² Π΄ΡΡΠ³ΠΈΡ ΡΠ»ΠΎΠ²Π°ΡΡΡ :
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ β (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°) ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΊΡΡΡΡΠ²Π°. ΠΡΠ·ΡΠΊΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΡΠ΄ΠΈΠΎΠ²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘Π»ΡΠΆΠ΅Π±Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ (ΡΠ΅ΠΎΡΠΈΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ) β ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΡΠΎ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ Π² ΡΠ΅ΠΎΡΠΈΠΈ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ ΡΠ°ΠΊΠΈΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ, ΠΊΠ°ΠΊ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ², ΠΏΡΡΠΌΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π³ΡΡΠΏΠΏ ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ². ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΡΠΎ Π²β¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΡΠ΅Π²Π½Π΅Π³ΠΎ ΠΠΎΡΡΠΎΠΊΠ° β ΠΡΡΠΎΡΠΈΡ Π½Π°ΡΠΊΠΈ ΠΠΎ ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π½Π°ΡΠΊΠΈ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° β I. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΡΠ²ΡΠ·Ρ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π½Π°ΡΠΊΠ°ΠΌΠΈ ΠΈ ΡΠ΅Ρ Π½ΠΈΠΊΠΎΠΉ. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° (Π³ΡΠ΅Ρ. mathematike, ΠΎΡ mΓ‘thema Π·Π½Π°Π½ΠΈΠ΅, Π½Π°ΡΠΊΠ°), Π½Π°ΡΠΊΠ° ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΡ ΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠΎΡΠΌΠ°Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΡΠ°. Β«Π§ΠΈΡΡΠ°Ρ β¦ ΠΠΎΠ»ΡΡΠ°Ρ ΡΠΎΠ²Π΅ΡΡΠΊΠ°Ρ ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ
ΠΠ°ΡΠ΅Π³ΠΎΡΠΈΡ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°) β Π’Π΅ΠΎΡΠΈΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ ΡΠ°Π·Π΄Π΅Π» ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΠΈΠ·ΡΡΠ°ΡΡΠΈΠΉ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ, Π½Π΅ Π·Π°Π²ΠΈΡΡΡΠΈΠ΅ ΠΎΡ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ[ΠΊΡΠΎ?] ΡΡΠΈΡΠ°ΡΡ ΡΠ΅ΠΎΡΠΈΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π°Π±ΡΡΡΠ°ΠΊΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΠΉ Π΄Π»Ρβ¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠ΅ΠΊΡΠΎΡ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°) β ΠΠ΅ΠΊΡΠΎΡ Π£ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠΈΠ½Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΌ. ΠΠ΅ΠΊΡΠΎΡ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
Π€ΡΠ½ΠΊΡΠΈΡ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°) β Π£ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠΈΠ½Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΌ. ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ°ΠΏΡΠΎΡ Β«ΠΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅Β» ΠΏΠ΅ΡΠ΅Π½Π°ΠΏΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΡΡΠ΄Π°; ΡΠΌ. ΡΠ°ΠΊΠΆΠ΅ Π΄ΡΡΠ³ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
ΠΠΏΠ΅ΡΠ°ΡΠΈΡ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°) β Π£ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠΈΠ½Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΌ. ΠΠΏΠ΅ΡΠ°ΡΠΈΡ. ΠΠΏΠ΅ΡΠ°ΡΠΈΡ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΡΡΠ°Π²ΡΡΠ΅Π΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° (Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°ΠΌ) Π΄ΡΡΠ³ΠΎΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ (Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅). Π’Π΅ΡΠΌΠΈΠ½ Β«ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡΒ» ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΊβ¦ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
Π ΠΎΡΠΎΡ (ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°) β Π£ ΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠΈΠ½Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΌ. Π ΠΎΡΠΎΡ. Π ΠΎΡΠΎΡ, ΠΈΠ»ΠΈ Π²ΠΈΡ ΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡ Π½Π°Π΄ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΌ ΠΏΠΎΠ»Π΅ΠΌ. ΠΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ (Π² ΡΡΡΡΠΊΠΎΡΠ·ΡΡΠ½ΠΎΠΉ[1] Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅) ΠΈΠ»ΠΈ (Π² Π°Π½Π³Π»ΠΎΡΠ·ΡΡΠ½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ β¦ ΠΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΡ
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅?
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅.
Π’Π°ΠΊ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° a β’ b, Π° ΡΠ°ΠΊΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΡΠ΅Π» a ΠΈ b. Π§ΠΈΡΠ»Π° a ΠΈ b β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠ°ΠΊ 3 β’ 4, ΡΠ°ΠΊ ΠΈ 4 β’ 3 ΡΠ°Π²Π½Ρ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈ ΡΠΎΠΌΡ ΠΆΠ΅ ΡΠΈΡΠ»Ρ 12.
3 ΠΈ 4 β ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, Π° 12 β ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅.
ΠΡΠΈ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. Π’Π°ΠΊΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ. ΠΡΠ»ΠΈ Π΅Π³ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π±ΡΠΊΠ²Π°ΠΌΠΈ, ΡΠΎ ΠΎΠ½ΠΎ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ:
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: a β’ (b β’ Ρ) = (Π° β’ b) β’ c.
Π ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΡΡΡΡ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΈ ΠΈΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΈΠ»ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ.
ΠΡΠΈΠΌΠ΅Ρ:
(4 β’ 2) β’ 3 = 8 β’ 3 = 24 ΠΈΠ»ΠΈ 4 β’ (2 β’ 3) = 4 β’ 6 = 24
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΡΠ±ΠΎΠ³ΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΡΠ°Π²Π½ΠΎ ΡΠ°ΠΌΠΎΠΌΡ ΡΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΡΠ±ΠΎΠ³ΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π½ΡΠ»Ρ, ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Ρ Π±ΡΠΊΠ²Π΅Π½Π½ΡΠΌΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΡΠΌΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π²ΠΌΠ΅ΡΡΠΎ 6 β’ x ΠΏΠΈΡΡΡ 6x, Π²ΠΌΠ΅ΡΡΠΎ a β’ b ΠΏΠΈΡΡΡ ab
Π’Π°ΠΊΠΆΠ΅ ΠΎΠΏΡΡΠΊΠ°ΡΡ Π·Π½Π°ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ,
Π²ΠΌΠ΅ΡΡΠΎ 4 β’ (a + b) ΠΏΠΈΡΡΡ 4(Π° + b),
Π²ΠΌΠ΅ΡΡΠΎ (x + 2) β’ (y + 3) ΠΏΠΈΡΡΡ (x + 2)(y + 3),
Π²ΠΌΠ΅ΡΡΠΎ a β’ (b β’ c) ΠΏΠΈΡΡΡ abc.
ΠΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΡΠ°ΡΡΡΠΉ Β«Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅?Β» ΡΠΈΡΠ°ΡΡ:
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π»
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΈΡΠ΅Π»
ΠΠ°Π΄Π°Π½ΠΈΠ΅. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π»:
1) 1.2$\cdot 3$ ; 2) 4$\cdot 5 \cdot 13$
ΠΡΠ²Π΅Ρ.
$4 \cdot 5 \cdot 13=260$
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΈΡΠ΅Π»
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΊΠ»ΡΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» Π½Π΅ ΠΏΠΎ Π·ΡΠ±Π°ΠΌ? Π’Π΅Π±Π΅ ΠΎΡΠ²Π΅ΡΠΈΡ ΡΠΊΡΠΏΠ΅ΡΡ ΡΠ΅ΡΠ΅Π· 10 ΠΌΠΈΠ½ΡΡ!
ΠΠ°Π΄Π°Π½ΠΈΠ΅. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» ΡΠ΄ΠΎΠ±Π½ΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ:
1) 5$\cdot 17 \cdot 2$ ; 2) 7$\cdot 2 \cdot 15 \cdot 5$
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅ΠΌ:
$$5 \cdot 17 \cdot 2=(5 \cdot 2) \cdot 17=10 \cdot 17=170$$
$$7 \cdot 2 \cdot 15 \cdot 5=(7 \cdot(2 \cdot 15)) \cdot 5=(7 \cdot 30) \cdot 5=210 \cdot 5=1050$$
ΠΡΠ²Π΅Ρ.
$5 \cdot 17 \cdot 2=170$
$7 \cdot 2 \cdot 15 \cdot 5=1050$
ΠΡΠ»ΠΈ ΡΡΡΠ½ΠΎΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» Π·Π°ΡΡΡΠ΄Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΡΠΎΠ»Π±ΠΈΠΊ. Π ΡΡΠΎΠ»Π±ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠ°ΡΡ Π±ΠΎΠ»ΡΡΠΈΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° ΠΈΠ»ΠΈ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ.
ΠΠ°Π΄Π°Π½ΠΈΠ΅. ΠΠ°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π»
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌΡΠ΅ ΡΠΈΡΠ»Π° Π² ΡΡΠΎΠ»Π±ΠΈΠΊ. ΠΠ°Π»Π΅Π΅ ΡΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠ½Π°ΡΠ°Π»Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ΄ ΡΠ΅ΡΡΠΎΠΉ. ΠΠ°ΡΠ΅ΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΄Π΅ΡΡΡΠΊΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠ΅. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ΄ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° ΠΎΠ΄ΠΈΠ½ ΡΠ°Π·ΡΡΠ΄ Π»Π΅Π²Π΅Π΅. Π ΠΊΠΎΠ½ΡΠ΅ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΡΠΌΠΌΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π² ΡΡΠΎΠ»Π±ΠΈΠΊ
Π§ΠΈΡΠ»Π°. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π». Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ.
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ β ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ΅ΡΡΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ, Π±ΠΈΠ½Π°ΡΠ½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠ΄ΠΈΠ½ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΡΡΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π΄ΡΡΠ³ΠΎΠΉ.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» m ΠΈ n β ΡΡΠΎ ΡΡΠΌΠΌΠ° n ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ , ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡΡΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ = m.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠΏΠ° m β’ n, ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» m ΠΈ n. Π§ΠΈΡΠ»Π° m ΠΈ n Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΡΠΌΠΈ.
ΠΡΠ»ΠΈ ΡΡΡΠ½ΠΎΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ΅Π» Π·Π°ΡΡΡΠ΄Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΡΠΎΠ»Π±ΠΈΠΊ. Π ΡΡΠΎΠ»Π±ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠ°ΡΡ Π±ΠΎΠ»ΡΡΠΈΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° ΠΈΠ»ΠΈ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ.
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΠ΅Π».
1. ΠΠΎΠΌΠΌΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ:
ΠΡΠΈ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΡΠ°Π΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. ΠΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ.
Π³Π΄Π΅, 3 ΠΈ 4 β ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, Π° 12 β ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅.
2. ΠΡΡΠΎΡΠΈΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ:
Π ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ 3-Ρ ΠΈ Π±ΠΎΠ»ΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΡΡΠΈΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π»ΠΈΠ±ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΎΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ.
3. ΠΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΡ:
4. ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΡΡΠΊΠΎΠ³ΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΡ, Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ ΡΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΡΡΠΊΠΎΠ³ΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π½ΡΠ»Ρ, = 0.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Ρ Π±ΡΠΊΠ²Π΅Π½Π½ΡΠΌΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΡΠΌΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ°ΠΊ:
ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π·Π½Π°ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ,
2 β’ (a + b) Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ ΠΊΠ°ΠΊ 2(Π° + b),
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅
Π ΡΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠΌΡΡ Ρ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ ΡΠ·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, 6 + 6 + 6 + 6 = 24 ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΏΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ: 6 β’ 4 = 24
Π‘ΠΌΡΡΠ» Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΡΠΌΠΌΠ° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ .
ΠΠ΅ΡΠ²ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΏΠΎΠ²ΡΠΎΡΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·.
ΠΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΏΠΎΠ²ΡΠΎΡΡΡΡ ΡΡΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅.
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ.
6 β’ 4 Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 6 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ 4 ΡΠ°Π·Π°: 6 + 6 + 6 + 6 = 24
Π§ΠΈΡΠ»Π° ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ
Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΈΠ»ΠΈ ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
Π§ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
ΠΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΡΠΈΡΠ°ΡΡ ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ.
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° 1
4 β’ 1 = 4, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 4 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ 1 ΡΠ°Π·.
23 β’ 1 = 23, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 23 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ 1 ΡΠ°Π·.
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° 0
8 β’ 0 = 0, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 8 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ 0 ΡΠ°Π·.
26 β’ 0 = 0, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 26 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ 0 ΡΠ°Π·.
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° 10
8 β’ 10 = 80, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 8 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ 10 ΡΠ°Π·.
15 β’ 10 = 150, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 15 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ 10 ΡΠ°Π·.
Π‘Π²ΡΠ·Ρ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
8 β’ 3 = 24, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ 8 ΠΏΠΎΠ²ΡΠΎΡΡΡΡ 3 ΡΠ°Π·Π°.
24 : 3 = 8, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π² 24 ΠΏΠΎ 3 ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ 8 ΡΠ°Π·.
24 : 8 = 3, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π² 24 ΠΏΠΎ 8 ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ 3 ΡΠ°Π·Π°.
Π Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· Π±ΠΎΠ»ΡΡΠ΅
Π Π΅ΡΠΈΠΌ Π·Π°Π΄Π°ΡΡ:
Π ΠΌΠ°Π³Π°Π·ΠΈΠ½Π΅ Π±ΡΠ»ΠΎ 2 Π»ΠΈΡΠΈΡΠΊΠΈ, Π° ΠΊΠΎΡΡΡ Π² 4 ΡΠ°Π·Π° Π±ΠΎΠ»ΡΡΠ΅. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π±ΡΠ»ΠΎ ΠΊΠΎΡΡΡ?
ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΠΊΠΎΡΡΡ Π±ΡΠ»ΠΎ 4 ΡΠ°Π·Π° ΠΏΠΎ 2.
ΠΠ°ΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΠΎ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· Π±ΠΎΠ»ΡΡΠ΅? ΠΠΎ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅?
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ΅ΡΠΈΠΌ Π·Π°Π΄Π°ΡΡ: Π ΠΌΠ°Π³Π°Π·ΠΈΠ½Π΅ Π±ΡΠ»ΠΎ 8 ΠΊΠΎΡΡΡ ΠΈ 2 Π»ΠΈΡΠΈΡΠΊΠΈ. ΠΠΎ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΊΠΎΡΡΡ Π±ΡΠ»ΠΎ Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Π»ΠΈΡΠΈΡΠ΅ΠΊ? ΠΠΎ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· Π»ΠΈΡΠΈΡΠ΅ΠΊ Π±ΡΠ»ΠΎ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΠΊΠΎΡΡΡ?
Π§ΡΠΎΠ±Ρ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° ΡΡΠΈ Π²ΠΎΠΏΡΠΎΡΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΏΠΎ 2 ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ Π² 8?
ΠΠ½Π°ΡΠΈΡ, ΠΊΠΎΡΡΡ Π² 4 ΡΠ°Π·Π° Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Π»ΠΈΡΠΈΡΠ΅ΠΊ, Π° Π»ΠΈΡΠΈΡΠ΅ΠΊ Π² 4 ΡΠ°Π·Π° ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΠΊΠΎΡΡΡ.
ΠΠΎΠ΄Π΅Π»ΠΈΡΡ Ρ Π΄ΡΡΠ·ΡΡΠΌΠΈ Π² ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ΅ΡΡΡ :