Что значит признак делимости
Признак делимости
При́знак дели́мости — правило, позволяющее сравнительно быстро определить, является ли число кратным заранее заданному без необходимости выполнять фактическое деление. Как правило, основано на действиях с частью цифр из записи числа в позиционной системе счисления (обычно десятичной).
Существуют несколько простых правил, позволяющих найти малые делители числа в десятичной системе счисления:
Содержание
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3 (так как все числа вида 10 n при делении на 3 дают в остатке единицу).
Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр (оно может быть двузначным, однозначным или нулём) делится на 4.
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3.
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 364 делится на 7, так как 36 — (2 × 4) = 28 делится на 7).
Либо использовать модификацию признака деления на 1001=10³+1, которое само делится на 7:
Для того, чтобы натуральное число делилось на 7 необходимо и достаточно, чтобы алгебраическая сумма чисел, образующих нечётные группы по три цифры (начиная с единиц) взятых со знаком «+» и чётных со знаком «-» делилась на семь.
Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры — нули или образуют число, которое делится на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Признак делимости на 11
Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.
Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 × 5) = 104 делится на 13).
Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.
Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.
Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного проще — число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятерённым числом единиц кратна 17 (например, 32952→3295-10=3285→328-25=303→30-15=15; поскольку 15 не делится на 17, то и 32952 не делится на 17)
Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 × 2) = 76 делится на 19).
Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков и единиц, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414; продолжаем: 4 + (3 * 14) = 46 — очевидно, делится на 23).
Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75).
Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.
Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).
Признак делимости на 2 n
Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.
Признак делимости на 5 n
Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.
Признак делимости на 10 n − 1
Признак делимости на 10 n
Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр — нули.
Признак делимости на 10 n + 1
См. также
Ссылки
Полезное
Смотреть что такое «Признак делимости» в других словарях:
Признак Паскаля — метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости». Содержание 1 Общий вид 2 Доказательство 3 О … Википедия
ПРИЗНАК — ПРИЗНАК, признака, муж. Та сторона в предмете или явлении, по которой его можно узнать, определить или описать, которая служит его приметой, знаком. «Основной признак различия между классами их место в общественном производстве, а следовательно,… … Толковый словарь Ушакова
ПРИЗНАК — ПРИЗНАК, а, муж. Показатель, примета, знак, по к рым можно узнать, определить что н. Различительные признаки. Признаки пола. Признаки весны. П. нетерпения. Без признаков жизни (в состоянии смерти). Признаки делимости (спец.). | прил. признаковый … Толковый словарь Ожегова
ДЕЛИМОСТИ ПРИЗНАК — на натуральное число d условие, к рому удовлетворяет натуральное число Ав том и только в том случае, если оно делится на d. Желательно, чтобы это условие можно было легко проверить и чтобы эта проверка была не сложнее непосредственного деления… … Математическая энциклопедия
Признак — в математике, логике то же, что и достаточное условие. В менее строгих науках слово «признак» употребляется, как описание фактов, позволяющих (согласно существующей теории и т.п.) сделать вывод о наличии интересующего явления. Примеры… … Википедия
Признаки делимости — Признак делимости алгоритм, позволяющий сравнительно быстро определить, является ли число кратным заранее заданному[1]. Если признак делимости позволяет выяснить не только делимость числа на заранее заданное, но и остаток от деления, то его … Википедия
Признаки делимости — На 2 делится каждое четное число. На 3 делится число, если сумма цифр его делится на три. На 4 делится число, если число, представляемое двумя последними цифрами, делится на 4. Число, оканчивающееся нулем или 5 ю, делится на пять. Четные числа,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Теория чисел — Теория чисел, или высшая арифметика раздел математики, изучающий целые числа и сходные объекты. В теории чисел в широком смысле рассматриваются как алгебраические, так и трансцендентные числа, а также функции различного происхождения, которые… … Википедия
История арифметики — Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия
99 (число) — 99 девяносто девять 96 · 97 · 98 · 99 · 100 · 101 · 102 Факторизация: 3×3×11 Римская запись: XCIX Двоичное: 1100011 Восьмеричное: 143 Шестнадцатеричное: 63 … Википедия
Какие признаки делимости чисел существуют
Признаки делимости чисел в математике — объяснение
Признаки делимости чисел — это условия, правила, по которым можно определить, делится ли число на заданное нам значение, т.е. кратно ли число делителю.
Делителем является число, на которое делится заданное число без остатка — нацело.
Термин «кратно» — синоним слову «делится».
Правила с доказательствами, определение
Любое натуральное число, которое оканчивается цифрой 0, делится без остатка на 10. Чтобы получить частное, нужно отбросить нуль.
Если запись натурального числа заканчивается нулем, то число делится на 10 нацело.
Если запись натурального числа заканчивается любой другой цифрой, то число не делится нацело на 10.
Но 378 не делится без остатка на 10, потому что получим неполное частное: 378 : 10 = 37 (остаток 8 ).
На конце числа 378 стоит цифра 8 — она и будет остатком при делении на 10. Значит, 378 не делится нацело на 10.
Применение признака позволяет не производить расчеты, а сразу отвечать на вопрос, делится ли заданное число на десять.
Тогда число 5 является делителем числа 20, т. е. 20 делится на пять нацело, без остатка.
Тогда число 5 является делителем числа 15, т. е. 15 делится на 5 нацело.
В разрядах единиц 20 и 15 стоят 0 и 5 соответственно.
Разряд — это место цифры в числе.
Если запись натурального числа заканчивается цифрами 0 или 5, то такое число делится нацело на 5.
Можно перефразировать признак:
Если в разряде единиц заданного числа стоит 0 или 5, то число делится на 5.
Если запись натурального числа заканчивается цифрой, отличной от нуля и пяти, то число на 5 нацело не делится.
Числа 645 и 760 делятся на 5, так как они заканчиваются 5 и 0 соответственно.
344 не делится нацело на 5 по признаку делимости:
Если число делится нацело на 2, то его называют четным. Если число не делится нацело на 2, то его называют нечетным.
Цифры 0, 2, 4, 6, 8 — четные, а 1, 3, 5, 7, 9 — нечетные. Тогда любое число будет четным, если в разряде единиц у него стоит четная цифра, а нечетным — в разряде единиц стоит нечетная цифра.
Если запись натурального числа оканчивается четной цифрой, то число делится на 2 нацело.
Если натуральное число оканчивается нечетной цифрой, то не делится нацело на 2.
Числа 14 и 56 делятся нацело на 2, так как они заканчиваются четными цифрами — 4 и 6.
Число 13 не делится нацело на 2, так как запись натурального числа заканчивается нечетной цифрой 3.
Если сумма цифр числа делится нацело на 9, то и само число делится нацело на 9.
Если сумма цифр числа не делится нацело на 9, то и само число не делится нацело на 9.
Рассмотрим, делится ли 98 на 9.
Сумма цифр числа: 9+8=17.
17 не делится нацело на 9, тогда число 98 не делится нацело на 9.
Проверяем: 98 : 9 = 10 (остаток 8 ).
18 делится нацело на 9, значит, 468 делится нацело на 9:
Если сумма цифр числа делится нацело на 3, то и само число делится нацело на 3.
Если сумма цифр числа не делится нацело на 3, то и само число не делится нацело на три.
Число 27 делится нацело на 3, так как сумма цифр делится на 3 нацело.
И, соответственно, 27:3=9.
Число 261 делится на 3 по признаку делимости:
Девять делится на 3 нацело, значит, число 261 делится на 3 нацело.
Дополнительные признаки делимости:
Натуральное число делится на 4 нацело в том случае, когда запись числа заканчивается двумя нулями или две последние цифры делятся на 4.
Например, по этому признаку число 144 делится на 4, так как 44 — две последние цифры — делится нацело на 4.
Натуральное число делится на 6 нацело тогда, когда число делится нацело и на 2, и на 3.
Значит, признак делимости на 6 включает в себя применения признака делимости на два и признака делимости на три.
Например, число 438 делится на 6 нацело.
Используя признак делимости на 6, поочередно применяем признаки делимости на 2 и 3.
Если число заканчивается четной цифрой, то оно делится на 2: число 438 заканчивается четной цифрой 8.
Значит, число делится и на 2, и на 3. Тогда 438 делится на 6 нацело.
Натуральное число делится на 8 нацело, если запись числа заканчивается тремя нулями либо если три последние цифры образуют число, которое делится на 8.
Например, 58000 делится на 8 по признаку делимости, так как число заканчивается тремя нулями.
Остальные признаки делимости можно вывести самостоятельно.
Где применяется в жизни
В жизни признаки делимости удобно применять тогда, когда под рукой нет гаджетов. И процесс определения делимости чисел значительно упрощается. При этом не нужно даже высчитывать результат непосредственного деления, если в задаче необходимо просто определить, делится ли одно число на другое.
Области применения признаков делимости:
Примеры решения задач
Назовите 3 числа, которые делятся на 2.
Вспоминаем признак делимости на 2:
Если число заканчивается четной цифрой, то оно делится на 2.
Тогда искомыми числами могут быть, например: 456, 768, 800.
Цифры 6, 8, 0 — четные: значит, числа 456, 768, 800 делятся на 2.
Какие из чисел 234, 450, 400, 3400, 35, 900, 235 000 делятся на 100?
Мы знаем признак делимости на 10:
Если число заканчивается 0, то число делится на 10.
Когда нужно определить, делится ли число на 100, действуем аналогично признаку делимости на 10. Только в этом случае нужно искать те числа, которые заканчиваются двумя нулями.
Тогда в ответе будут числа: 400, 3400, 900, 235 000.
Аналогично действуем тогда, когда нужно найти числа, которые делятся на 1000, 1000 и так далее. Ищем числа по количеству нулей после единицы в делителе.
Какие из чисел 100, 35, 450, 5680, 20 делятся и на 5, и на 10.
Число делится на 5, если заканчивается 0 или 5.
Число делится на 10, если заканчивается 0.
Тогда, чтобы число делилось и на 5, и на 10, нужно найти в признаках что-то общее. Общим будет окончание чисел на 0.
По признакам делимости на 5, и на 10 получаем в ответе числа: 100, 450, 5680 и 20.
Найдите три числа, которые делятся на 2 и на 9.
Чтобы число делилось и на 2, и на 9, должны выполняться условия обоих признаков.
Число делится на 2 тогда, когда оканчивается четной цифрой. Четные цифры — это 0, 2, 4, 6, 8.
Число делится на 9 тогда, когда сумма цифр числа делится на 9.
Тогда искомыми числами могут быть: 18, 396 и 468.
В разряде единиц в 18, 396 и 468 стоят 8, 6 и 8 соответственно — четные цифры, значит числа 18, 396 и 468 делятся на 2.
Осталось проверить, делятся ли они на 9. Считаем сумму цифр в числах.
Значит, числа 18, 396 и 468 делятся на 9.
Числа удовлетворяют условиям.
Ответ: 18, 396 и 468.
Какие из чисел 456, 567, 3453, 768 и 34500 кратны 3?
Слово «кратно» является синонимом «делится». Тогда нужно найти числа, которые делятся на 3.
По признаку делимости искомыми будут числа, сумма цифр которых делится на три нацело.
Выбираем те числа, сумма которых делится на 3:
456, так как сумма цифр равна 15, а 15 делится на 3 нацело;
567, потому что сумма цифр равна 18, а 18 делится на 3 нацело;
3453 — сумма цифр равна 18, значит, число делится на 3;
768 — сумма цифр равна 21, значит, число делится на 3.
Основные признаки делимости.
Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости.
Наиболее незамысловатый признак делимости для единицы: на единицу делится все числа. Так же элементарно и с признаками делимости на два, пять, десять. На два можно поделить четные число либо то у которого итоговая цифра 0, на пять – число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.
Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9, 4, 6 и 8, 25. Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.
Характерная особенность деления на 3 и на 9.
На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.
Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.
Характерная особенность деления на 4, 8, 16 и так далее.
Цифру можно без остатка разделить на четыре, если у нее две последние цифры нули или являются числом, которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.
Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.
Схожий принцип пригоден и для признака делимости на восемь. Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.
Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.
Характерная особенность делимости на 6.
Число делится на шесть, если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.
126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)
Характерная особенность делимости на 7.
Число делится на семь если разность его удвоенного последнего числа и «числа, оставшегося без последней цифры»делится на семь, то и само число делится на семь.
Характерная особенность делимости на 11.
На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.
На двадцать пять поделятся числа, две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах – число невозможно поделить целиком на 25.
9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.
Что значит признак делимости
Признак делимости на 2 n
Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.
Признак делимости на 5 n
Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.
Признак делимости на 10 n +1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогда и только тогда, когда само число делится на 10 n + 1.
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.
Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).
Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.
Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.
Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)
Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).
Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).
Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.
Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.
Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).
Рейтинг: 3.5/5 (Всего оценок: 207)
Признаки делимости
Всего получено оценок: 191.
Всего получено оценок: 191.
Признаки делимости чисел сложно применять, поскольку их достаточно много. Зато знание таких признаков существенно экономит время, поскольку позволяет без деления узнать, делиться одно число на другое или нет. Разберемся в теме подробнее.
Что такое делимость?
Признаки делимости позволяют просто и быстро определить, возможно ли полностью поделить одно число на другое. А делимость это и есть возможность поделить одно число на друге без остатка.
Признаки делимости
Признаки делимости удобнее изучать, разбив возможные делители на группы. Поступим так же и рассмотрим делимость на каждую из групп в отдельности.
На 2,4,8
Эти числа в рассматриваемом вопросе сгруппированы, так как их признаки очень похожи друг на друга.
На 3 и 9
Число делится на 3, если сумма цифр этого числа делится на 3. Рассмотрим число: 804. Оно делится на 3, поскольку сумма цифр 8+0+4=12 – делится на 3.
Число делится на 9, если сумма цифр числа делится на 9. Признак похож на признак делимости на число 3.
Интересно: Если число делится на 9, то оно делится и на 3. При этом, число, которое делится на 3 не всегда делится на 9.
Число делится на 5, если последняя цифра числа равняется 5 или нулю. Это наиболее известный признак делимости, наряду с делимостью на 2.
Чтобы число делилось на 6, оно должно делиться на 2 и 3, так как 2*3=6. Поэтому признак делимости на 6 это объединение признаков деления на 2 и на 3.
То есть: число делится на 6, если оно четное и сумма всех его цифр делится на 3
Самые сложные в восприятии признаки делимости на 7 и на 11. Число делится на 7, если разность сумм четных цифр числа и нечетных цифр чисел делится на 7.
Приведем пример: число 469 делится на 7. Почему? Сумма цифр на нечетных позициях 4+9=13. Сумма чисел на четных позициях 6. Разность получившихся сумм: 13-6=7, а это число делится на 7. Поэтому все число 469 делится на 7
На 10
Число делится на 10 только если последней цифрой числа является 0
По тому же принципу определяют делимость числа на 100, 1000 и так далее. Если у числа два нуля на конце, то оно делится на 100, если три нуля на конце, число делится на 1000 и так далее.
На 11
Число делится на 11 только, если разность сумм четных и нечетных цифр числа делится на 11 или равняется нулю Приведем пример:
Число 2035 делится на 11. Сумма цифр, стоящих на четных позициях: 2+3=5. Сумма нечетных цифр: 0+5=5. Разность полученных выражений:5-5=0, значит число делится на 11.
Нельзя путать понятия четной позиции и четного числа. Цифра это знак, который используется для записи чисел. Число это набор цифр, каждая из которых стоит на своей позиции. В числе 127 всего три цифры. Цифра 1 стоит на первой позиции, цифра 2 на второй и так далее. На четной позиции находится цифра 2. На нечетных позициях цифры 1 и 7.
Чтобы быстрее запомнить все группы можно свести в таблицу признаков делимости чисел.
Признаки
Запомни
Признак делимости на 2
Число делится на 2, если его последняя цифра делится на 2 или является нулём.
Признак делимости на 4
Число делится на 4, если две его последние цифры нули или образуют число, делящееся на 4.
Признак делимости на 8
Число делится на 8, если три последние его цифры нули или образуют число, делящееся на 8.
Признак делимости на 3
Число делится на 3, если сумма всех его цифр делится на 3.
Признак делимости на 6
Число делится на 6, если оно делится одновременно на 2 и на 3.
Признак делимости на 9
Число делится на 9, если сумма всех его цифр делится на 9.
Признак делимости на 5
Число делится на 5, если его последняя цифра 5 или 0.
Признак делимости на 25
Число делится на 25, если его две последние цифры нули или образуют число, которое делится на 25.
Признак делимости на 10,100 и 1000.
10 делятся нацело только те числа, последняя цифра которых нуль.
На 100 делятся нацело только те числа, две последние цифры которых нули.
На 1000 делятся нацело только те числа, три последние цифры нули.
Признак делимости на 11
Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Что мы узнали?
Мы поговорили о признаках делимости. Расписали все существующие признаки по группам. В особо сложных ситуациях привели примеры.
- Что значит признак действия
- Что значит признак налогоплательщика