Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ систСмы Ρ‚ΠΎΡ‡Π΅ΠΊ (Ρ‚Π΅Π»Π°), ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой, связанный с двиТущимся Ρ‚Π΅Π»ΠΎΠΌ, Ρ„ΠΎΡ€ΠΌΠ° ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²ΠΎ врСмя двиТСния Π½Π΅ ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ, остаСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ своСму полоТСнию Π² любой ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. [1]

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Π½ΠΎ Π΅Π³ΠΎ основная ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ β€” сохранСниС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ любого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° самому сСбС, остаётся Π² силС.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ своСму ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ эквивалСнтно ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ пСрСносу.Однако, рассматриваСмоС ΠΊΠ°ΠΊ физичСский процСсс ΠΎΠ½ΠΎ прСдставляСт собой Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π²ΠΈΠ½Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ двиТСния (Π‘ΠΌ. Рис. 2)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ двиТСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠ°Π±ΠΈΠ½Π° Π»ΠΈΡ„Ρ‚Π°. Π’Π°ΠΊΠΆΠ΅, Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΊΠ°Π±ΠΈΠ½Π° колСса обозрСния. Однако, строго говоря, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½Ρ‹ колСса обозрСния нСльзя ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.

Π’ соотвСтствиС с ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ ΠΈ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΠΡŒΡŽΡ‚ΠΎΠ½Π° ΠΊΠ°Π±ΠΈΠ½Π°, ΡΡ‚Ρ€Π΅ΠΌΡΡΡŒ ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ своСго двиТСния, отклоняСтся ΠΎΡ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ прямой, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π² Ρ€Π°Π·Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠΎ Ρ€Π°Π·Π½Ρ‹Π΅ стороны ΠΎΡ‚ оси симмСтрии колСса обозрСния. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π΅ всякая прямая, связанная с ΠΊΠ°Π±ΠΈΠ½ΠΎΠΉ, пСрСмСщаСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ самой сСбС. ΠŸΡ€ΠΈΡ‡Ρ‘ΠΌ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½Ρ‹ ΠΎΡ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ прямой, ΠΈ соотвСтствСнно, ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния ΠΊΠ°Π±ΠΈΠ½Ρ‹ ΠΎΡ‚ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Π΅ΠΌ большС, Ρ‡Π΅ΠΌ большС частота вращСния колСса обозрСния. Учитывая, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ частоты вращСния колёс обозрСния достаточно ΠΌΠ°Π»Ρ‹, Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния ΠΈΡ… ΠΊΠ°Π±ΠΈΠ½ вСсьма Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния. Π­Ρ‚ΠΈΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… источниках Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½Ρ‹ приводится Π² качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния.

МодСлью ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ (Ссли ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ ΠΊΠ°Ρ‡Π°Π½ΠΈΠ΅ΠΌ ступни) являСтся пСдаль вСлосипСда, ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‰Π°Ρ ΠΏΡ€ΠΈ этом Π·Π° ΠΏΠΎΠ»Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ» своСго Ρ…ΠΎΠ΄Π° ΠΎΠ΄ΠΈΠ½ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π²ΠΎΠΊΡ€ΡƒΠ³ своСй оси.

Бвязь двиТСния Ρ‚Π΅Π»Π° ΠΈ двиТСния Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ

Если Ρ‚Π΅Π»ΠΎ двиТСтся ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ для описания Π΅Π³ΠΎ двиТСния достаточно ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ†Π΅Π½Ρ‚Ρ€Π° масс Ρ‚Π΅Π»Π°).

Одной ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… характСристик двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ являСтся Π΅Ρ‘ траСктория, Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ собой ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΊΡ€ΠΈΠ²ΡƒΡŽ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ сопряТённых Π΄ΡƒΠ³ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ радиуса, исходящСго ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· своСго Ρ†Π΅Π½Ρ‚Ρ€Π°, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’ ΠΏΡ€Π΅Π΄Π΅Π»Π΅ ΠΈ прямая ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ Π΄ΡƒΠ³Π°, радиус ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π΅Π½ бСсконСчности.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС оказываСтся, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ любая Ρ‚ΠΎΡ‡ΠΊΠ° Ρ‚Π΅Π»Π° ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π²ΠΎΠΊΡ€ΡƒΠ³ своСго ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π΄Π»ΠΈΠ½Π° радиуса Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π° для всСх Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ‚Π΅Π»Π°. ΠžΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ‚Π΅Π»Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ испытываСмыС ΠΈΠΌΠΈ ускорСния.

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ тСорСтичСской ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ Π±Ρ‹Π²Π°Π΅Ρ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° ΠΊΠ°ΠΊ слоТСниС двиТСния Ρ†Π΅Π½Ρ‚Ρ€Π° масс Ρ‚Π΅Π»Π° ΠΈ Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния самого Ρ‚Π΅Π»Π° Π²ΠΎΠΊΡ€ΡƒΠ³ Ρ†Π΅Π½Ρ‚Ρ€Π° масс (это ΠΎΠ±ΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ принято Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠšΡ‘Π½ΠΈΠ³Π°).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚Π΅ русским языком: Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°?

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅
ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆΠ½ΠΎΠΌ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅ β€” ΠΏΠ°Π½Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π΅, Π²Π΅Π΄ΡƒΡ‰Π΅Π΅ ΠΈ Π²Π΅Π΄ΠΎΠΌΠΎΠ΅ ΠΏΠ»Π΅Ρ‡ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всСгда ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ двиТутся ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ. ΠŸΡ€ΠΈ этом любая Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π° двиТущихся частях ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ Π² плоскости Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ двиТСния, каТдая Π²ΠΎΠΊΡ€ΡƒΠ³ своСго ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° вращСния с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ для всСх двиТущихся Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ.

БущСствСнно, Ρ‡Ρ‚ΠΎ Π²Π΅Π΄ΡƒΡ‰Π΅Π΅ ΠΈ Π²Π΅Π΄ΠΎΠΌΠΎΠ΅ ΠΏΠ»Π΅Ρ‡ΠΎ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, хотя ΠΈ двиТущиСся согласно, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚Π΅Π»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ радиусы ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ двиТутся Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Π²Π΅Π΄ΡƒΡ‰Π΅ΠΌ ΠΈ Π²Π΅Π΄ΠΎΠΌΠΎΠΌ ΠΏΠ»Π΅Ρ‡Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ сдСланы Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ, ΠΈ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² этом ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ смысл использования ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ ΠΊΡ€ΠΈΠ²ΡƒΡŽ Π½Π° плоскости Π² ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅, опрСдСляСмым ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π»ΠΈΠ½ ΠΏΠ»Π΅Ρ‡.

Рис 1.ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π° плоскости слСва-Π½Π°ΠΏΡ€Π°Π²ΠΎ, с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π² Π½Ρ‘ΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ AB. Π’Π½Π°Ρ‡Π°Π»Π΅ прямолинСйноС, Π·Π°Ρ‚Π΅ΠΌ β€” ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅, пСрСходящСС Π²ΠΎ Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π²ΠΎΠΊΡ€ΡƒΠ³ своСго Ρ†Π΅Π½Ρ‚Ρ€Π° с Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ для Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌΠΈ скоростями ΠΈ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ значСниями радиуса ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°. Π’ΠΎΡ‡ΠΊΠΈ O β€” ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Ρ‹Π΅ Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π²ΠΏΡ€Π°Π²ΠΎ. R β€” ΠΈΡ… Ρ€Π°Π²Π½Ρ‹Π΅ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, Π½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ для Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Ρ‹Π΅ радиусы ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°.
ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ систСмы Ρ‚ΠΎΡ‡Π΅ΠΊ (Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°), ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π»ΡŽΠ±Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ этого Ρ‚Π΅Π»Π°, Ρ„ΠΎΡ€ΠΌΠ° ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²ΠΎ врСмя двиТСния Π½Π΅ ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ, остаСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ своСму полоТСнию Π² любой ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ [1].
ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Π°Ρ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π²ΠΎΠΏΡ€Π΅ΠΊΠΈ распространённому ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΡŽ [2], ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ являСтся ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ двиТСнию Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ, Π° Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ΠΎΠ² β€” Π½Π΅ Π·Π°ΠΊΠΎΠ½Ρ‡ΠΈΠ²ΡˆΠΈΡ…ΡΡ Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ этом подразумСваСтся, Ρ‡Ρ‚ΠΎ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΅ΡΡ‚ΡŒ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π²ΠΎΠΊΡ€ΡƒΠ³ бСсконСчно ΡƒΠ΄Π°Π»Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚ Ρ‚Π΅Π»Π° Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°.
Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Π½ΠΎ Π΅Π³ΠΎ основная ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ β€” сохранСниС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ любого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° самому сСбС, остаётся Π² силС.
ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ своСму ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ эквивалСнтно ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ пСрСносу. Однако, рассматриваСмоС ΠΊΠ°ΠΊ физичСский процСсс, ΠΎΠ½ΠΎ прСдставляСт собой Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π²ΠΈΠ½Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ двиТСния (Π‘ΠΌ. Рис. 2)
Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ [ΡƒΠ±Ρ€Π°Ρ‚ΡŒ]
1ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния
2Бвязь двиТСния Ρ‚Π΅Π»Π° ΠΈ двиТСния Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ
3ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ устройств
4Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅
5ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ
6Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°
7Бсылки
ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния [ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ | ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π²ΠΈΠΊΠΈ-тСкст]
ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ двиТСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠ°Π±ΠΈΠ½Π° Π»ΠΈΡ„Ρ‚Π°. Π’Π°ΠΊΠΆΠ΅, Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΊΠ°Π±ΠΈΠ½Π° колСса обозрСния. Однако, строго говоря, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½Ρ‹ колСса обозрСния нСльзя ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.
Π’ соотвСтствиС с ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ ΠΈ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΠΡŒΡŽΡ‚ΠΎΠ½Π° ΠΊΠ°Π±ΠΈΠ½Π°, ΡΡ‚Ρ€Π΅ΠΌΡΡΡŒ ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ своСго двиТСния, отклоняСтся ΠΎΡ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ прямой, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π² Ρ€Π°Π·Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠΎ Ρ€Π°Π·Π½Ρ‹Π΅ стороны ΠΎΡ‚ оси симмСтрии колСса обозрСния. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π΅ всякая прямая, связанная с ΠΊΠ°Π±ΠΈΠ½ΠΎΠΉ, пСрСмСщаСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ самой сСбС. ΠŸΡ€ΠΈΡ‡Ρ‘ΠΌ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½Ρ‹ ΠΎΡ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ прямой, ΠΈ соотвСтствСнно, ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния ΠΊΠ°Π±ΠΈΠ½Ρ‹ ΠΎΡ‚ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Π΅ΠΌ большС, Ρ‡Π΅ΠΌ большС частота вращСния колСса обозрСния. Учитывая, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ частоты вращСния колёс обозрСния достаточно ΠΌΠ°Π»Ρ‹, Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния ΠΈΡ… ΠΊΠ°Π±ΠΈΠ½ вСсьма Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния. Π­Ρ‚ΠΈΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… источниках Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½Ρ‹ приводится Π² качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния.
МодСлью ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ (Ссли ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ ΠΊΠ°Ρ‡Π°Π½ΠΈΠ΅ΠΌ ступни) являСтся пСдаль вСлосипСда, ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‰Π°Ρ ΠΏΡ€ΠΈ этом Π·Π° ΠΏΠΎΠ»Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ» своСго Ρ…ΠΎΠ΄Π° ΠΎΠ΄ΠΈΠ½ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π²ΠΎΠΊΡ€ΡƒΠ³ своСй оси.
Бвязь двиТСния Ρ‚Π΅Π»Π° ΠΈ двиТСния Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ [ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ | ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π²ΠΈΠΊΠΈ-тСкст]
Если Ρ‚Π΅Π»ΠΎ двиТСтся ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ для описания Π΅Π³ΠΎ двиТСния достаточно ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ†Π΅Π½Ρ‚Ρ€Π° масс Ρ‚Π΅Π»Π°).
Одной ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… характСристик двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ являСтся Π΅Ρ‘ траСктория, Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ собой ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΊΡ€ΠΈΠ²ΡƒΡŽ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ сопряТённых Π΄ΡƒΠ³ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ радиуса, исходящСго ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· своСго Ρ†Π΅Π½Ρ‚Ρ€Π°, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’ ΠΏΡ€Π΅Π΄Π΅Π»Π΅ ΠΈ прямая ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ Π΄ΡƒΠ³Π°, радиус ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π΅Π½ бСсконСчности.

Рис. 2 ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π’Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Π΅Π»Π°
Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС оказываСтся, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ любая Ρ‚ΠΎΡ‡ΠΊΠ° Ρ‚Π΅Π»Π° ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ Π²ΠΎΠΊΡ€ΡƒΠ³ своСго ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΏΠΎ

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это мСханичСскоС двиТСниСсистСмы Ρ‚ΠΎΡ‡Π΅ΠΊ (Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°), ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π»ΡŽΠ±Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ этого Ρ‚Π΅Π»Π°, Ρ„ΠΎΡ€ΠΌΠ° ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²ΠΎ врСмя двиТСния Π½Π΅ ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅-Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° двиТутся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

Допустим Π΅Π΄Π΅Ρ‚ Ρ‚Π΅Π»Π΅ΠΆΠΊΠ°, Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Ρ‚Π΅Π»Π΅ΠΆΠΊΠΈ ΠΌΡ‹ Π½Π΅ возьмСм Π΅Ρ‘ траСктория двиТСния Π±ΡƒΠ΄Π΅Ρ‚ такая ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ Ρƒ любой Π΄Ρ€ΡƒΠ³ΠΎΠΉ взятой Ρ‚ΠΎΡ‡ΠΊΠΈ этой ΠΆΠ΅ Ρ‚Π΅Π»Π΅ΠΆΠΊΠΈ, Π½Π΅ смотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Π»Π΅ΠΆΠΊΠ° Π±ΡƒΠ΄Π΅Ρ‚ Π΅Ρ…Π°Ρ‚ΡŒ ΠΏΠΎ Π½Π΅Ρ€ΠΎΠ²Π½ΠΎΠΉ повСрхности

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ Π½Π° Π²ΠΈΠ΄Ρ‹:

ΠŸΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° ΠΈΠ· Π½ΠΈΡ… – ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅, Π° ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡŽ основных Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ.

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π£Π³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Ρ‚Π΅Π»Π°

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ любая прямая, провСдСнная Π² Π½Π΅ΠΌ, двигаСтся, ΠΎΡΡ‚Π°Π²Π°ΡΡΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ своСму Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌΡƒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ.

ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, Π½ΠΎ Π½Π΅ всякоС ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ прямолинСйным. ΠŸΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅Π»Π° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Бвойства ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ: ΠΏΡ€ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ всС Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ значСниями скорости ΠΈ ускорСния.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ любой Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π­Ρ‚ΠΎ сводится ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎ скорости ΠΈ ускорСнии Ρ‚Π΅Π»Π° ΠΈΠΌΠ΅ΡŽΡ‚ смысл Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния. Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… случаях Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ скоростями ΠΈ ускорСниями.

Π’Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° Π²ΠΎΠΊΡ€ΡƒΠ³ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ оси – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ‚Π΅Π»Π°, находящихся Π² плоскостях, пСрпСндикулярных Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ прямой, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ осью вращСния, ΠΈ описываниС окруТностСй, Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ Π½Π° этой оси.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠŸΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ вращСния значСния ΡƒΠ³Π»ΠΎΠ² ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ‚Π΅Π»Π° Π±ΡƒΠ΄ΡƒΡ‚ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹.

Π’Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅Π’Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅
Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅
s = υ · tφ = ω · t
υ = c o n s tω = c o n s t
a = 0Ξ΅ = 0
Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅
s = Ο… 0 t Β± a t 2 2Ο† = Ο‰ 0 t Β± Ξ΅ Β· t 2 2
υ = υ 0 ± a · tω = ω 0 ± Ρ · t
a = c o n s tΞ΅ = c o n s t
НСравномСрноС
s = f ( t )Ο† = f ( t )
υ = d s d tω = d φ d t
a = d Ο… d t = d 2 s d t 2Ξ΅ = d Ο‰ d t = d 2 Ο† d t 2

Π—Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

РСшСниС

РСшСниС

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² школьной ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ΠΈΠ·ΡƒΡ‡Π°Π΅Ρ‚ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ Ρ„ΠΈΠ·ΠΈΠΊΠ°. Для понимания, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ собой прСдставляСт, ΠΊΠ°ΠΊΠΈΠΌ Π·Π°ΠΊΠΎΠ½Π°ΠΌ подчиняСтся, ΠΈΠ·ΡƒΡ‡ΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΈ рассмотрим понятиС Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² повсСднСвной ΠΆΠΈΠ·Π½ΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° (всСх взаимосвязанных Π΅Π³ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ мСханичСского воздСйствия ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΈΠ· Π΄Π²ΡƒΡ… Π»ΡŽΠ±Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ всСгда ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ своСму Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ, ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌΡƒ Π½Ρ‹Π½Π΅ΡˆΠ½Π΅ΠΌΡƒ, Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, называСтся ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π’ процСссС пСрСмСщСния характСристика ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π΅ мСняСтся: ΠΏΠΎ составу, Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ сторон. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ Π² любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΠΎΠ΄Π½ΠΈΠΌ ΠΈ Ρ‚Π΅ΠΌ ΠΆΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² скорости ΠΈ ускорСния, Π° ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π’Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ прямолинСйноС ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅.

Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Π² ΠΌΠΎΠΆΠ½ΠΎ привСсти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ оборудования ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ².

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ стрСлы с Π³Ρ€ΡƒΠ·ΠΎΠΌ ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ подъСмного ΠΊΡ€Π°Π½Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΅Π³ΠΎ ΠΊΠ°Π±ΠΈΠ½Ρ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ сидит Ρ€Π°Π±ΠΎΡ‡ΠΈΠΉ;

подъСм ΠΈ спуск Π»ΠΈΡ„Ρ‚Π° Π² ΡˆΠ°Ρ…Ρ‚Π΅;

ΠΏΠ΅Π΄Π°Π»ΠΈ Ρƒ вСлосипСда. ΠŸΡ€ΠΈ этом каТдая Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°, Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ², ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ двиТСния;

ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π±ΠΈΠ½ΠΎΠΉ ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ² Π½Π° колСсС обозрСния Π² ΠΏΠ°Ρ€ΠΊΠ°Ρ… Π°Ρ‚Ρ‚Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΎΠ².

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° (Ρ‚Π΅Π»Π°), ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ двиТСния, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ ΠΏΡƒΡ‚ΠΈ, Π° скорости ΠΈ ускорСния Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ Π΄Π°Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ линию Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Π»ΡŽΠ±Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°, ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – ΠΏΡƒΡΡ‚ΡŒ это Π±ΡƒΠ΄ΡƒΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ А ΠΈ Π’.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ АВ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ: А описываСт Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ АА1А2А3Аn, Π° Π’ соотвСтствСнно – Π’1Π’2Π’3Π’n.

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ:

ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ (const) ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ, Π° сам ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ свойство Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π² пространствС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ своСму ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΌΠ΅ΡΡ‚ΠΎΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ, Π·Π½Π°Ρ‡ΠΈΡ‚ направлСния Ρ‚ΠΎΡ‡ΠΊΠΈ А ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π’ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚.

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ радиусов-Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΅Π΅ Π½Π°Ρ‡Π°Π»Π° – О (Рис 1),

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π³Π΄Π΅ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡƒΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ А соотвСтствуСт функция rA(t), Ρ‚ΠΎΡ‡ΠΊΠΈ B – rB(t).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для опрСдСлСния ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° достаточно Π·Π½Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ пСрСмСщСния любой ΠΎΠ΄Π½ΠΎΠΉ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, изучая ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ пСрСдвиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π°, Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° опрСдСлСния ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния.

Основной Π·Π°ΠΊΠΎΠ½ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния

Основной Π·Π°ΠΊΠΎΠ½ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Ρ€Π°ΠΊΡ‚ΡƒΠ΅Ρ‚ II Π·Π°ΠΊΠΎΠ½ ΠΡŒΡŽΡ‚ΠΎΠ½Π°.

Π€ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ° Π·Π°ΠΊΠΎΠ½Π° Π·Π²ΡƒΡ‡ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сил, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… воздСйствиС Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ, способствуСт возникновСнию ускорСния. Π’ΠΎ Π΅ΡΡ‚ΡŒ, ускорСниС прямо ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌΡƒ суммарному Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Π½Π° Π½Π΅Π³ΠΎ сил, ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ массС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°.

ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ Π½ΠΈΠΆΠ΅:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ΠŸΡ€ΠΈΡ‡Π΅ΠΌ Ρƒ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ускорСниС

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

II Π·Π°ΠΊΠΎΠ½ ΠΡŒΡŽΡ‚ΠΎΠ½Π° Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π² ИБО (ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ систСма отсчСта), Π³Π΄Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π΄Π²ΠΈΠ³Π°ΡŽΡ‚ΡΡ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, прямолинСйно ΠΈΠ»ΠΈ находятся Π² состоянии покоя.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ прямая, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Π΄Π²Π΅ Π»ΡŽΠ±Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π°, остаСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ самой сСбС.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ измСнСния полоТСния Ρ‚Π΅Π»Π° Π² пространствС, Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ само это ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅. Как извСстно, Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ€Π°Π·Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ этого Ρ‚Π΅Π»Π° находятся Π² Ρ€Π°Π·Π½Ρ‹Ρ… мСстах пространства. Как ΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ всСго Ρ‚Π΅Π»Π°? Π’ основном, ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ двиТущСгося Ρ‚Π΅Π»Π° Π½Π΅Ρ‚ нСобходимости, особСнно Ссли всС Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° двиТутся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

НапримСр, Π·Π°Ρ‡Π΅ΠΌ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠΏΡƒΡΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ с Π³ΠΎΡ€Ρ‹ санок, Ссли эти двиТСния Π½ΠΈΡ‡Π΅ΠΌ Π½Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ всС Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ двиТутся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.

ΠŸΡ€ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ всС Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° двиТутся ΠΏΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ траСкториям, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ скоростями ΠΈ ускорСниями. ΠžΠ±Ρ‰Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ называСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния, Π° ΠΎΠ±Ρ‰Π΅Π΅ ускорСниС всСх Ρ‚ΠΎΡ‡Π΅ΠΊ – ускорСниСм ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния.

ΠŸΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΊΠ°ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΈ прямолинСйным.

НапримСр, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ двиТСтся Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ, находящийся Π² ΠΊΠ°Π±ΠΈΠ½Π΅ Π»ΠΈΡ„Ρ‚Π°, ΠΈΠ»ΠΈ Ρ‡Π΅ΠΌΠΎΠ΄Π°Π½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°ΡŽΡ‚ с ΠΏΠΎΠ»Π°. Для описания Π΅Π³ΠΎ двиТСния достаточно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎΠΉ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° сводится ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *