Что значит последовательность ограничена сверху и снизу
Числовая последовательность
Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.
Обозначается числовая последовательность так:
где −i-ый член последовательности.
При словестном задании последовательности, описывается из каких элементов она состоит.
Последовательность нечетных чисел:
Последовательность простых чисел :
Последовательности (1) и (2) мы задали словестно.
Последовательность нечетных чисел аналитически задается формулой
Отметим, что последовательность простых чисел невозможно задать аналитически.
Пример задания рекуррентной последовательности:
В этой последовательности
Пример стационарной последовательности:
Возрастающие и убывающие последовательности
Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей :
Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей :
Пример 1. Выяснить, монотонна ли последовательность
Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):
Найдем разность членов и
:
(3) |
Так как n=1,2,3. то правая часть уравнения (3) положительна. Тогда:
Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).
Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и
:
(4) |
Посмотрим на правую часть выражения (4). Если a 10, то . Тогда последовательность является убывающей. При a=10
. Последовательность имеет одинаковые члены:
т.е. имеем дело с последовательностью
Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.
Ограниченные и неограниченные последовательности
Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.
Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.
Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и
:
(6) |
Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).
Далее, сделаем эквивалентное преобразование для проследовательности (5):
Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3.
Так как последовательность возрастающая, то все члены последовательности не меньше . Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.
Сходящиеся и расходящиеся последовательности
Рассмотрим две числовые последовательности:
На координатной прямой изобразим члены этих последовательностей:
Предел числовой последовательности
Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:
Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.
Если k является пределом последовательности (yn), то пишут (
стремится к k или
сходится к k).
Обозначают это так:
Выраженние (11) читается так: предел проследовательности , при стремлении n к бесконечности равен k.
Изложим некоторые пояснения к определению 8.
Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал , где
радиус этой окрестности (
>0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.
Если же взять другую окресность (пусть
), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.
Пример 4. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы .
Пусть, например, r=0.001. Вычислим n‘ из уравнения
В качестве n0 берем 501. Имеем:
Запишем члены последовательности (12) начиная с номера 501:
Далее, учитывая (13), имеем:
Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность . А по определению 8, это означает:
Пример 5. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы
Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что для любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда
. Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).
Запишем члены последовательности, начиная с номера 2000:
Легко проверить, что . Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:
Пример 6. Найти предел последовательности
Решение. Выполним некоторые преобразования выражения (18):
Тогда последовательность (18) можно переписать так:
(19) |
Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):
Свойства сходящихся последовательностей
Сходящиеся последовательности обладают рядом свойств.
Свойство 1. Если последовательность сходится, то только к одному пределу.
Свойство 2. Если последовательность сходится, то она ограничена.
Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).
Предел стационарной последовательности равен значению любого члена последовательности:.
Теорема. Если , то
1. Предел суммы равен сумме пределов:
2. Предел произведения равен произведению пределов:
3. Предел частного равен частному пределов:
4. Постоянный множитель можно вывести за знак предела:
Пример 7. Найти предел последовательности:
Решение. Так как , то
Пример 8. Найти предел последовательности:
Решение. Применив правило «предел суммы» теоремы, получим
Пример 9. Вычислить:
Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило «предел суммы» для числителя и знаменателя и правило «предел частного»:
Числовая последовательность. Предел числовой последовательности
Разделы: Математика
1. ОПРЕДЕЛЕНИЕ ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ И СПОСОБЫ ЕЕ ЗАДАНИЯ
Определение 1
Функцию вида ,
I N называют функцией натурального аргумента или числовой последовательностью и обозначают
или
.
Обозначение: .
Способы задания последовательностей:
Словесный – правило задания последовательности описано словами, без указания каких – то формул.
ПРИМЕР 1. Задана последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, …
Аналитический – последовательность задана формулой ее n – го члена.
Рекурентный – указано правило, позволяющее вычислить n – ый член последовательности, если известны ее предыдущие члены.
ПРИМЕР 3. Задана последовательность соотношениями: а = а1, аn + 1 = an + d, где a и d – некоторые числа, d – разность арифметической прогрессии.
2. СВОЙСТВА ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ
Определение 2
Последовательность называют ограниченной сверху, если все ее члены не больше некоторого числа.
Последовательность ограничена сверху, если существует число М такое, что для любого n выполняется
2 ; ….ограничена сверху. В качестве верхней границы можно взять число –1 или любое число, которое больше, чем –1, например 0.
![]()
–16 –9 –4 –1 0 х
Определение 3
Последовательность называют ограниченной снизу, если все ее члены не меньше некоторого числа.
Последовательность ограничена снизу, если существует число m такое, что для любого n выполняется уn > m. Число m называют нижней границей последовательности.
ПРИМЕР 5. Последовательность 1; 4; 9; 16; …; n 2 ; … ограничена снизу. В качестве нижней границы можно взять число 1 или любое число меньше, чем 1, например 0.
![]()
1 4 9 16 х
Определение 4
Последовательность называют ограниченной, последовательность ограничена и сверху, и снизу.
ПРИМЕР 6. Последовательность 1; ;
;
; …;
; …. Эта последовательность ограничена и сверху, и снизу. В качестве верхней границы можно взять число 1, в качестве нижней границы – число 0.
![]()
0![]()
![]()
![]()
![]()
1 х
Определение 5
Последовательность ( уn ) называют возрастающей, если каждый ее член больше предыдущего: у 1 у 2 > у 3 > у 4 > … > уn > уn+ 1 > …
ПРИМЕР 8. Последовательность 1; ;
;
; …;
; … – убывающая.
Если а > 1, то последовательность уn = аn возрастает; если 0 n убывает.
Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.
Определение 7
Последовательность, члены которой не изменяются с изменением номера, называется постоянной (или стационарной).
ПРИМЕР 9. Последовательность 1; 1; 1; 1; 1; … – постоянная (или стационарная).