Что значит подобные в алгебре

Подобные слагаемые, их приведение, примеры

Приведение подобных слагаемых является одним из наиболее употребимых тождественных преобразований. В этом разделе мы дадим определение термина, разберем, что обозначает словосочетание «приведение подобных слагаемых», рассмотрим основные правила выполнения действий и наиболее распространенные типы задач.

Определение и примеры подобных слагаемых

В большинстве учебных пособий тема подобных слагаемых разбирается после знакомства с буквенными выражениями, когда появляется необходимость проводить с ними различные преобразования.

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Слагаемые – это, как известно, составные элементы суммы. Это значит, что они могут присутствовать лишь в тех выражениях, которые представляют собой сумму. Буквенная часть – это одна или произведение нескольких букв, которые представляют собой переменные. Слагаемые с буквенной частью – это произведение некоторого числа и буквенной части. Здесь некоторое число также носит название числового коэффициента.

Буквенная часть может быть представлена не только произведением букв, но также и произвольным буквенным выражением. Например:

Обобщим изложенные выше утверждения и дадим еще одно определение подобных слагаемых.

Подобные слагаемые – это слагаемые в буквенном выражении, которые имеют одинаковую буквенную часть, а также слагаемые, которые не имеют буквенной части, если под буквенной частью понимать любое буквенное выражение.

Числовые коэффициенты подобных слагаемых могут быть равны, тогда мы говорим о том, что подобные слагаемые одинаковые. Если же числовые коэффициенты различаются, то подобные слагаемые будут разными.

Возьмем для примера выражение 2 · x · y + 3 · y · x и рассмотрим такой нюанс: являются ли слагаемые 2 · x · y и 3 · y · x подобными. В задачах этот вопрос может иметь следующую формулировку: одинаково ли буквенное выражение части x · y и y · x указанных слагаемых? Буквенные множители в приведенном примере имеют различный порядок, что в свете данного выше определения не делает их подобными.

К слову, в некоторых источниках при нестрогом отношении к вопросу, слагаемые из примера могут называться подобными. Но лучше не допускать таких неточностей в трактовках.

Приведение подобных слагаемых, правило, примеры

Под преобразованием выражений, которые содержат подобные слагаемые, подразумевается проведение сложения этих слагаемых. Проводится это действие обычно в три этапа:

Приведем пример таких вычислений.

Описанные три шага для экономии времени записывают в виде правила приведения подобных слагаемых. Согласно правило для того, чтобы привести подобные слагаемые, необходимо сложить их коэффициенты, а затем умножить полученный результат на буквенную часть при ее наличии.

Решение

Источник

Одночлен. Подобные одночлены. Степень одночлена.

Одночленом является выражение, содержащее числа, натуральные степени переменных и их произведения, причем оно не должно содержать любых действий с этими числами и переменными.

Одночлен (или моном) — простое выражение в математике, которое рассматривается и используется в элементарной алгебре. Если точнее, произведение, которое состоит из числового множителя и 1-ной либо нескольких переменных, каждая из которых взята в положительной степени.

Или другими словами:

Стандартным видом одночлена является одночлен как произведение числового множителя, который стоит на 1-ом месте, и степеней разных переменных. Каждый одночлен возможно привести к стандартному виду методом перемножения всех переменных и чисел, которые входят в него.

Приведение одночлена к стандартному виду:

Произведение одночленов тоже является одночленом.

Одночлен в некоторой натуральной степени тоже оказывается одночленом.

Результаты таких действий (умножение одночленов и возведение одночлена в степень) обычно приводятся к стандартному виду.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Число 0 является нулевым одночленом.

Подобные одночлены.

2 одночлена, которые приведены к стандартному виду, являются подобными, когда они совпадают либо отличаются лишь числовым коэффициентом.

Сложение и вычитание подобных одночленов является приведением подобных слагаемых.

Одночлены, у которых произведения переменных одинаковы (порядок их может отличаться) называются подобными одночленами.

Подобными одночленами являются Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебреи Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре; Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебреи Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре; Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебреи Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре; 5 и −3; Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебреи Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре.

Подобными одночленами не являются Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебреи Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре.

Если у подобных одночленов коэффициенты равны, то они являются равными (одинаковыми) одночленами.

Подтвердить это можно, записав одночлены в стандартном виде:

8xy 3 ; xy 3 ; 8y 3 x; 24xyyy; 8x 3 y => 8xy 3 ; xy 3 ; 8xy 3 ; 8xy 3 ; 8x 3 y;

Если у подобных одночленов коэффициенты оказываются противоположными числами, то такие одночлены являются противоположными.

Умножение одночленов. Возведение одночленов в степень.

При умножении одночленов и возведении одночленов в степень пользуются правилом умножения степеней с одинаковым основанием и правилом возведения степени в степень. При этом получают одночлен, представляемый обычно в стандартном виде.

Для того, чтобы умножить одночлен на одночлен, необходимо умножить их коэффициенты и степени с равными основаниями.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Что бы возвести одночлена в степень, необходимо возвести его коэффициент в эту степень и умножить показатель степени всех букв на показатель степени, в которую возводится одночлен.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Для того, чтобы поделить одночлен на одночлен, необходимо поделить коэффициенты делимого на коэффициент делителя, к найденной части дописать множителями все буквы делимого с показателем, который равен разнице показателей этой буквы в делимом и делителе.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Складывая и вычитая многочлены используют правило раскрытия скобок.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Чтобы умножить одночлен на многочлен, необходимо все члены многочлена умножить на этот одночлен и одночлены, которые получены, сложить.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Чтобы умножить многочлен на многочлен, необходимо все члены 1-го многочлена домножить на все члены второго многочлена и члены, которые получены, сложить.

Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре

Чтобы разделить многочлен на одночлен, необходимо все члены многочлена разделить на этот одночлен и результаты, которые получены, сложить.

Источник

Что такое подобные одночлены?

Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являются подобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:

3a 2 и –4a 2 ; 31 и 45; a 2 bx 4 и 1,4a 2 bx 4 ; 100y 3 и 100y 3

Но одночлены –6ab 2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.

Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x 2 + 15x 2 = 19x 2
5ab – 1,7ab = 3,3ab
13a 10 b 5 c 3 – 13a 10 b 5 c 3 = 0a 10 b 5 c 3 = 0

Эти действия называются приведением подобных одночленов.

Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x

То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2

Источник

Подобные слагаемые, их приведение, примеры.

Одним из наиболее часто используемых тождественных преобразований является приведение подобных слагаемых. В этой статье мы дадим определение подобных слагаемых, разберемся, что называют приведением подобных слагаемых, рассмотрим правила, по которым выполняется это действие, и приведем примеры приведения подобных слагаемых с подробным описанием решения.

Навигация по странице.

Определение и примеры подобных слагаемых.

Разговор о подобных слагаемых возникает после знакомства с буквенными выражениями, когда возникает необходимость проведения преобразований с ними. По учебникам математики Н. Я. Виленкина определение подобных слагаемых дается в 6 классе, и оно имеет следующую формулировку:

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента, и буквенной части.

Дальше из контекста указанного выше учебника становится видно дополнение к определению подобных слагаемых – слагаемые в буквенном выражении, не имеющие буквенной части, также называют подобными.

Позже расширяется и понятие буквенной части – буквенной частью начинаю считать не только произведение букв, а произвольное буквенное выражение. К примеру, в учебнике алгебры для 8 класса авторов Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова под редакцией С. А. Теляковского приведена сумма вида Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре, и сказано, что составляющие ее слагаемые являются подобными. Общей буквенной частью этих подобных слагаемых является выражение с корнем вида Что значит подобные в алгебре. Смотреть фото Что значит подобные в алгебре. Смотреть картинку Что значит подобные в алгебре. Картинка про Что значит подобные в алгебре. Фото Что значит подобные в алгебре.

Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.

Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.

Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).

Приведение подобных слагаемых, правило, примеры

Приведение подобных слагаемых проводится в три этапа:

Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых: чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).

Для закрепления материала рассмотрим решение еще одного примера.

Источник

Упрощения алгебраических выражений

Что значит упростить алгебраическое выражение

Алгебраическое выражение — одна или несколько алгебраических величин (чисел и переменных), которые объединены с помощью знаков арифметических действий в виде сложения, вычитания, умножения, деления, извлечения корня, возведения в степень (при целых значениях показателей корня и степени), знаков последовательности, определяющих порядок применения данных операций (скобки разного вида).

Обязательным условием для алгебраического выражения является конечное число величин, которые его составляют. Данный принцип пригодиться математикам для решения задач в средних классах школы.

Упростить выражение — это значит уменьшить число арифметических действий, необходимых для вычисления значения данного выражения с учетом определенных значений переменных.

Правила упрощения алгебраических выражений

Существуют основные методы в алгебре для того, чтобы упростить алгебраическое выражение:

В процессе приведения выражения в более простую форму следует использовать полезные советы:

Приведение подобных

Приведение подобных слагаемых в теории заключается в сложении их коэффициентов и приписывании буквенной части.

Подобными являются слагаемые (одночлены), которые обладают буквенной частью.

В выражении 2ab+3ab+b одночлены 2ab и 3ab являются подобными слагаемыми.

Привести подобные — значит, выполнить сложение нескольких подобных слагаемых для получения в результате одного слагаемого.

К примеру, приведем слагаемые:

Заметим, что числа в таких слагаемых умножают на буквы. Данные числа носят названия коэффициентов.

Рассмотрим выражение с квадратной степенью:

Здесь число 3 является коэффициентом.

Разложение на множители

Разложить выражение на множители можно, если вынести общий множитель за скобки, применить формулы сокращенного умножения и другие.

a b 2 + a 2 c = a b 2 + a c

В распространенных случаях разложение на множители следует за приведением подобных при упрощении выражений. В итоге получаются произведения. Чтобы это понять, отдельно нужно упомянуть правила действия с дробями, а именно, при сокращении дроби числитель и знаменатель требуется записать, как произведения.

Сокращение дроби

В процессе сокращения дроби допустимо выполнять умножение или деление числителя и знаменателя дроби на одинаковое число, отличное от нуля, в результате чего величина дроби остается прежней.

Объяснение алгоритм действий при сокращении дробей:

a a + b a 2 = a a + b a · a = a + b a

Важно заметить, что сокращению подлежат исключительно множители.

Озвученное правило является следствием ключевого свойства дроби. Оно состоит в допустимости умножения или деления числителя и знаменателя дроби на одно и то же число, которое не равно нулю. В результате значение дроби останется без изменений.

Существует простой способ, руководствуясь которым можно определить, разложено ли выражение на множители. Арифметическое действие, выполняемое в последнюю очередь при вычислении значения выражения, считается «главным».

Данное правило состоит в том, что, когда при подстановке каких-либо чисел на замену буквам и вычислении значения выражения последнее действие представляет собой умножение, можно заключить, что перед нами произведение, то есть выражение разложено на множители. В том случае, когда на последнем шаге в процессе расчетов выполняется сложение или вычитание, разложение выражения на множители не выполнено, то есть сокращение не допускается.

Сложение и вычитание дробей

При сложении и вычитании обыкновенных дробей требуется найти общий знаменатель, умножить каждую из дробей на недостающий множитель и сложить или вычесть числители:

a b + c d = a · d + c · b b · d ;

Разберем правило на конкретных примерах. Вычислим:

Заметим, что знаменатели являются взаимно простыми, то есть не имеют общих множителей. Таким образом, наименьший общий множитель данных чисел соответствует их произведению. В результате:

В данном случае общим множителем является число 24. Выполним преобразования и упростим выражение:

В данном примере следует смешанные дроби записать в виде неправильных. Далее можно упростить выражение по стандартному алгоритму:

Разберем самостоятельный случай, когда знаменатели не содержат буквы. При этом алгоритм действий такой же, как и при действиях с обыкновенными дробями:

Здесь общий множитель равен 12. Тогда:

a 2 b · 3 4 + a · 2 6 = 3 a 2 b + 2 a 12

Далее можно привести подобные в числители, и разложить на множители при их наличии:

a 2 b 4 + a 6 = 3 a 2 b + 2 a 12 = a 3 a b + 2 12

Когда знаменатели содержат буквы, схема действий существенно не меняется:

Рассмотрим пример, когда требуется упростить выражение:

Разложим знаменатели на множители:

a b 2 = a · b · b a 2 b = a · a · b

Вычислим единые множители:

a b 2 = a ¯ · b ¯ ¯ · b a 2 b = a ¯ · a · b ¯ ¯

Затем можно записать общие множители и выполнить умножение:

a ¯ · b ¯ ¯ · a · b = a 2 b 2

1 a b 2 · a + 1 a 2 b · b = a + b a 2 b 2

Умножение и деление дробей

Умножение и деление дробей выполняют таким образом:

a b · c d = a · c b · d ;

a b : c d = a · d b · c

Арифметические действия выполняют в следующем порядке:

Важно заметить, что при наличии скобок, операции, которые в них заключены, необходимо выполнить в первую очередь. Далее можно приступать к раскрытию скобок. Когда имеется несколько скобок с арифметическими действиями, которые нужно умножить или разделить, в начале проводят вычисления в каждой из скобок, а затем умножение или деление полученных результатов. При наличии внутренних скобок, заключенных в скобки, действия в них выполняют в первую очередь.

Используя правило умножения и деления дробей, получим:

Во многих примерах имеются не только цифры, но и буквы. В этом случае выполняются алгебраические действия, в том числе, приведение подобных, сложение, сокращение дробей и другие операции. Отличия можно заметить при разложении многочленов на множители. Для этого следует пользоваться формулами сокращенного умножения или вынесением единого множителя за скобки.

Ключевой задачей при работе с такими выражениями является запись выражений в виде произведения или частного.

Попробуем упростить выражение:

Так как имеются скобки, следует начать преобразования именно с них. Упростим разность дробей, которая в них записана, чтобы получить вместо нее произведение или частное. Приведем дроби к единому знаменателю и определим сумму:

Заметим, что дальнейшие преобразования не приведут к упрощению данного выражения. Причина этого заключается в том, что каждый из множителей является элементарным. В результате:

Пояснения на примерах

Требуется упростить выражения:

Приведем подобные и упростим выражения:

Заметим, что ab и 2ba являются подобными по той причине, что:

В результате можно сделать вывод, что данные слагаемые обладают одинаковой буквенной частью.

Требуется упростить выражения:

Путем разложения на множители упростим данные выражения:

a b 2 + a 2 c = a b 2 + a c

72 30 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 3 5 = 12 5

a a + b a 2 = a a + b a · a = a + b a

В первую очередь выполним разложение на множители:

Дано выражение, которое требуется упростить:

В данном случае требуется разложить знаменатели на множители. Первый знаменатель записан так, что можно вынести за скобки х. Второй знаменатель содержит разность квадратов. Выполним преобразования:

Рассмотрим выражение на наличие общих множителей:

Заметим, что при переносе слагаемых, заключенных в скобках, изменился знак перед дробью. Приведем выражения к единому знаменателю:

Воспользуемся формулой сокращенного умножения, а именно, разностью кубов:

Заметим, что в знаменателе дроби расположено выражение, которое называют неполным квадратом суммы:

x 2 + 2 x + 4 = x 2 + 2 · x + 2 2

Второе по счету слагаемое в неполном квадрате суммы является произведением первого и последнего. Неполный квадрат суммы представляет собой множитель, который входит в состав разложения разности кубов:

Требуется упростить выражения:

Дано выражение, которое требуется упростить:

При наличии в знаменателях одного и того же множителя, возведенного в разные степени, то в общем знаменателе данный множитель будет обладать самой большой из имеющихся степеней. Применительно к этой задаче, общий знаменатель будет состоять из следующих выражений:

a во второй степени;

x в третьей степени;

b в третьей степени;

y в четвертой степени.

В результате получим:

Нужно упростить выражение:

Исключить ошибки можно, если расписать заранее порядок операций. В первую очередь целесообразно суммировать дроби, расположенные в скобках. В результате будет получена только одна дробь. Далее можно приступить к делению дробей. Полученный итог следует прибавить к последней дроби.

Выглядит этот алгоритм таким образом:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *