Что значит найти подобные слагаемые
Подобные слагаемые, их приведение, примеры.
Одним из наиболее часто используемых тождественных преобразований является приведение подобных слагаемых. В этой статье мы дадим определение подобных слагаемых, разберемся, что называют приведением подобных слагаемых, рассмотрим правила, по которым выполняется это действие, и приведем примеры приведения подобных слагаемых с подробным описанием решения.
Навигация по странице.
Определение и примеры подобных слагаемых.
Разговор о подобных слагаемых возникает после знакомства с буквенными выражениями, когда возникает необходимость проведения преобразований с ними. По учебникам математики Н. Я. Виленкина определение подобных слагаемых дается в 6 классе, и оно имеет следующую формулировку:
Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.
Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента, и буквенной части.
Дальше из контекста указанного выше учебника становится видно дополнение к определению подобных слагаемых – слагаемые в буквенном выражении, не имеющие буквенной части, также называют подобными.
Позже расширяется и понятие буквенной части – буквенной частью начинаю считать не только произведение букв, а произвольное буквенное выражение. К примеру, в учебнике алгебры для 8 класса авторов Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова под редакцией С. А. Теляковского приведена сумма вида , и сказано, что составляющие ее слагаемые являются подобными. Общей буквенной частью этих подобных слагаемых является выражение с корнем вида
.
Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.
Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.
Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).
Приведение подобных слагаемых, правило, примеры
Приведение подобных слагаемых проводится в три этапа:
Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых: чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).
Для закрепления материала рассмотрим решение еще одного примера.
6.4.2. Раскрытие скобок. Приведение подобных слагаемых
1. Раскрытие скобок, перед которыми стоит знак «+» или не стоит никакого знака.
Если перед скобками стоит знак «+» или не стоит никакого знака, то убираем скобки, знак «+» и записываем слагаемые, стоявшие в скобках, без изменений.
Примеры. Раскрыть скобки.
1в) 7x+(-a-2b+5c-k) = 7x-a-2b+5c-k.
2. Раскрытие скобок, перед которыми стоит знак «-».
Если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.
Примеры. Раскрыть скобки.
Числовой множитель, стоящий перед буквенным множителем, называют коэффициентом. Так, в выражении 5а коэффициент равен 5, а в выражении (-а) коэффициент равен (-1).
Нахождение алгебраической суммы подобных слагаемых называется приведением подобных слагаемых.
Чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
Примеры. Привести подобные слагаемые.
3в) 5,2с-2,8с-6,4с+9с = (5,2-2,8-6,4+9)с = 5с.
4. В алгебраическом выражении могут быть различного вида подобные слагаемые. В этом случае подобные слагаемые подчеркиваются одинаковыми линиями.
Примеры. Привести подобные слагаемые.
5. Для преобразования алгебраических выражений с помощью раскрытия скобок используют распределительное свойство умножения: чтобы сумму чисел умножить на третье число, можно каждое слагаемое умножить на третье число и сложить результаты.
Примеры. Раскрыть скобки.
5а) 2 (4х-5у) = 2 ∙ 4х+2 ∙ (-5) = 8х-10у;
6. Упростить алгебраическое выражение – это значит раскрыть скобки, выполнить указанные действия, привести подобные слагаемые.
Примеры. Упростить выражение.
7. Примеры для самостоятельного решения. Упростить:
Подобные слагаемые, их приведение, примеры
Приведение подобных слагаемых является одним из наиболее употребимых тождественных преобразований. В этом разделе мы дадим определение термина, разберем, что обозначает словосочетание «приведение подобных слагаемых», рассмотрим основные правила выполнения действий и наиболее распространенные типы задач.
Определение и примеры подобных слагаемых
В большинстве учебных пособий тема подобных слагаемых разбирается после знакомства с буквенными выражениями, когда появляется необходимость проводить с ними различные преобразования.
Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.
Слагаемые – это, как известно, составные элементы суммы. Это значит, что они могут присутствовать лишь в тех выражениях, которые представляют собой сумму. Буквенная часть – это одна или произведение нескольких букв, которые представляют собой переменные. Слагаемые с буквенной частью – это произведение некоторого числа и буквенной части. Здесь некоторое число также носит название числового коэффициента.
Буквенная часть может быть представлена не только произведением букв, но также и произвольным буквенным выражением. Например:
Обобщим изложенные выше утверждения и дадим еще одно определение подобных слагаемых.
Подобные слагаемые – это слагаемые в буквенном выражении, которые имеют одинаковую буквенную часть, а также слагаемые, которые не имеют буквенной части, если под буквенной частью понимать любое буквенное выражение.
Числовые коэффициенты подобных слагаемых могут быть равны, тогда мы говорим о том, что подобные слагаемые одинаковые. Если же числовые коэффициенты различаются, то подобные слагаемые будут разными.
Возьмем для примера выражение 2 · x · y + 3 · y · x и рассмотрим такой нюанс: являются ли слагаемые 2 · x · y и 3 · y · x подобными. В задачах этот вопрос может иметь следующую формулировку: одинаково ли буквенное выражение части x · y и y · x указанных слагаемых? Буквенные множители в приведенном примере имеют различный порядок, что в свете данного выше определения не делает их подобными.
К слову, в некоторых источниках при нестрогом отношении к вопросу, слагаемые из примера могут называться подобными. Но лучше не допускать таких неточностей в трактовках.
Приведение подобных слагаемых, правило, примеры
Под преобразованием выражений, которые содержат подобные слагаемые, подразумевается проведение сложения этих слагаемых. Проводится это действие обычно в три этапа:
Приведем пример таких вычислений.
Описанные три шага для экономии времени записывают в виде правила приведения подобных слагаемых. Согласно правило для того, чтобы привести подобные слагаемые, необходимо сложить их коэффициенты, а затем умножить полученный результат на буквенную часть при ее наличии.
Решение
Как приводить подобные слагаемые. примеры
Определение и примеры подобных слагаемых.
Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.
Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента, и буквенной части.
Вот теперь можно привести примеры подобных слагаемых. Рассмотрим сумму двух слагаемых 3·a и 2·a вида 3·a+2·a. Слагаемые в этой сумме имеют одинаковую буквенную часть, которая представлена буквой a, поэтому, согласно определению эти слагаемые являются подобными. Числовыми коэффициентами указанных подобных слагаемых являются числа 3 и 2.
Еще пример: в сумме 5·x·y3·z+12·x·y3·z+1 подобными являются слагаемые 5·x·y3·z и 12·x·y3·z с одинаковой буквенной частью x·y3·z. Заметим, что в буквенной части присутствует степень y3, ее присутствие не нарушает данное выше определение буквенной части, так как она, по сути, является произведением y·y·y.
Отдельно отметим, что числовые коэффициенты 1 и −1 у подобных слагаемых часто не записываются явно. Например, в сумме 3·z5+z5−z5 все три слагаемых 3·z5, z5 и −z5 являются подобными, они имеют одинаковую буквенную часть z5 и коэффициенты 3, 1 и −1 соответственно, из которых 1 и −1 явно не видны.
Дальше из контекста указанного выше учебника становится видно дополнение к определению подобных слагаемых – слагаемые в буквенном выражении, не имеющие буквенной части, также называют подобными.
Исходя из этого, в сумме 5+7·x−4+2·x+y подобными слагаемыми являются не только 7·x и 2·x, но и слагаемые без буквенной части 5 и −4.
Аналогично, подобными слагаемыми в выражении 4·(x2+x−1/x)−0,5·(x2+x−1/x)−1 можно считать слагаемые 4·(x2+x−1/x) и −0,5·(x2+x−1/x), так как они имеют одинаковую буквенную часть (x2+x−1/x).
Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.
Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.
Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).
В заключение этого пункта обсудим один очень тонкий момент. Рассмотрим выражение 2·x·y+3·y·x. Являются ли слагаемые 2·x·y и 3·y·x подобными? Этот вопрос можно формулировать и так: «одинаковы ли буквенные части x·y и y·x указанных слагаемых»? Порядок следования буквенных множителей в них различен, так что фактически они не одинаковые, следовательно, слагаемые 2·x·y и 3·y·x в свете введенного выше определения не являются подобными.
Однако достаточно часто такие слагаемые называют подобными (но для строгости лучше этого не делать). При этом руководствуются вот чем: согласно переместительному свойству умножения перестановка множителей в произведении не влияет на результат, поэтому исходное выражение 2·x·y+3·y·x можно переписать в виде 2·x·y+3·x·y, слагаемые которого подобны. То есть, когда говорят о подобных слагаемых 2·x·y и 3·y·x в выражении 2·x·y+3·y·x, то имеют в виду слагаемые 2·x·y и 3·x·y в преобразованном выражении вида 2·x·y+3·x·y.
Приведение подобных слагаемых, правило, примеры
Преобразование выражений, содержащих подобные слагаемые, подразумевает выполнение сложения этих слагаемых. Это действие получило особое название — приведение подобных слагаемых.
Приведение подобных слагаемых проводится в три этапа:
Разберем записанные шаги на примере. Приведем подобные слагаемые в выражении 3·x·y+1+5·x·y. Во-первых, переставляем слагаемые местами так, чтобы подобные слагаемые 3·x·y и 5·x·y оказались рядом: 3·x·y+1+5·x·y=3·x·y+5·x·y+1. Во-вторых, выносим буквенную часть за скобки, получаем выражение x·y·(3+5)+1. В-третьих, вычисляем значение выражения, которое образовалось в скобках: x·y·(3+5)+1=x·y·8+1. Так как числовой коэффициент принято записывать перед буквенной частью, то перенесем его на это место: x·y·8+1=8·x·y+1. На этом приведение подобных слагаемых завершено.
Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых: чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).
Решение предыдущего примера с использованием правила приведения подобных слагаемых будет короче. Приведем его. Коэффициентами подобных слагаемых 3·x·y и 5·x·y в выражении 3·x·y+1+5·x·y являются числа 3 и 5, их сумма равна 8, умножив ее на буквенную часть x·y, получаем результат приведения этих слагаемых 8·x·y. Осталось не забыть про слагаемое 1 в исходном выражении, в итоге имеем 3·x·y+1+5·x·y=8·x·y+1.
Для закрепления материала рассмотрим решение еще одного примера.
Приведите подобные слагаемые: 0,5·x+1/2+3,5·x−1/4.
Сначала приведем подобные слагаемые 0,5·x и 3,5·x. По правилу складываем их коэффициенты 0,5+3,5=4 (при необходимости изучите статью сложение десятичных дробей), и этот результат умножаем на буквенную часть, получаем 4·x.
Теперь приводим подобные слагаемые без буквенной части 1/2+(−1/4)=1/2−1/4=1/4. Здесь нам придется применить правило сложения чисел с разными знаками, после чего выполнить вычитание обыкновенных дробей. Имеем 1/2+(−1/4)=1/2−1/4=1/4.
В итоге имеем 0,5·x+1/2+3,5·x−1/4=4·x+1/4.
Краткая запись решения может быть такой: 0,5·x+1/2+3,5·x−1/4=(0,5·x+3,5·x)+(1/2−1/4)=4·x+1/4.
В заключение разговора про приведение подобных слагаемых отметим, что это действие базируется на распределительном свойстве умножения относительно сложения, которое выражается равенством a·(b+c)=a·b+a·c. При приведении подобных слагаемых это равенство используется справа налево, то есть, в виде a·b+a·c=a·(b+c).
Многочлен стандартного вида
Определение многочлена
Многочлен — это сумма одночленов. Получается, что многочлен — не что иное, как несколько одночленов, собранных «под одной крышей».
Одночлен — это частный случай многочлена.
Рассмотрим примеры многочленов:
Если многочлен состоит из двух одночленов, его называют двучленом:
Многочлен — это сумма одночленов, поэтому знак «минус» относится к числовому коэффициенту одночлена. Именно поэтому мы записываем – 3×2, а не просто 3×2.
Этот же многочлен можно записать вот так:
Это значит, что каждый одночлен важно рассматривать вместе со знаком, который перед ним стоит.
Многочлен вида 10x – 3×2 + 7 называется трехчленом.
Линейный двучлен — это многочлен первой степени: ax + b. a и b здесь — некоторые числа, x — переменная.
Если разделить многочлен с переменной x на линейный двучлен x – b (где b — некоторое положительное или отрицательное число) — остаток будет только многочленом нулевой степени. То есть некоторым числом N, которое можно определить без поиска частного.
Если многочлен содержит обычное число — это число является свободным членом многочлена.
Свободный член многочлена не имеет буквенной части. Кроме того, любое числовое выражение — это многочлен. Например, вот такие числовые выражения — тоже многочлены:
Такие выражения состоят из свободных членов.
Многочлен стандартного вида
Недостаточно просто знать, что такое многочлен и что такое одночлен. Это целая алгебраическая экосистема, где у всего есть названия, определения и особенности.
Давайте разберемся, что такое многочлен стандартного вида. Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.
Получается, что всякий многочлен можно привести к стандартному виду. Таким образом можно получить многочлен, работать с которым гораздо проще и приятнее.
К стандартному виду многочлен приводится очень просто. Нужно лишь привести в нем подобные слагаемые.
Подобные слагаемые — это подобные члены многочлена. Приведение подобных слагаемых в многочлене — приведение его подобных членов. Тут же возникает резонный вопрос: Что такое подобные члены многочлена? Это члены с одинаковой буквенной частью.
Давайте разберем на примере, как «нестандартный» многочлен приводится к стандартному виду.
Дан красавец многочлен: 3x + 5xy2 + x – xy2
Приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Как видите, в получившемся многочлене нет подобных членов. Такой многочлен — это многочлен стандартного вида.
Степень многочлена
Многочлен может иметь степень — имеет на это полное право.
Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов.
Из определения можно сделать вывод, что степень многочлена возможно определить только после приведения его к стандартному виду.
Рассмотрим на примере:
Дан многочлен 6x + 4xy2 + x + xy2
Сначала приводим многочлен к стандартному виду — для этого приводим подобные слагаемые:
Получаем многочлен стандартного вида 6x + 4xy2 + x + xy2 = 7x + 5xy2.
Отсюда делаем вывод, что многочлен 7x + 5xy2 — многочлен второй степени.
Кроме того, можно сделать вывод, что и исходный многочлен 6x + 4xy2 + x + xy2 — многочлен второй степени, поскольку оба многочлена равны друг другу.
В некоторых случаях необходимо сначала привести к стандартному виду одночлены многочлена, а затем уже и сам многочлен.
Пример:
Получившийся многочлен без труда приводим к стандартному виду. Приводим подобные слагаемые:
Коэффициенты многочлена
Коэффициенты членов многочлена — это числа, которые указаны перед переменными множителями. Если перед переменной нет числа, то коэффициент этого члена = 1.
Иными словами — коэффициенты членов многочлена — это члены многочлена, представленные в виде стандартных одночленов.
Например:
Все одночлены имеют стандартный вид. 2, 5 и 18 — коэффициенты членов данного многочлена.
Кажется, со стандартным видом многочлена все понятно. Чтобы без труда приводить любой многочлен к стандартному виду, нужно потренироваться, ведь в 7 классе только и разговоров, что о многочленах. Давайте разберем несколько примеров. Попробуйте решить их самостоятельно, сверяясь с ответами.
Задание раз. Приведите многочлен к стандартному виду и определите его степень: 4x + 6xy2 + x – xy2.
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Получаем многочлен стандартного вида: 4x + 6xy2 + x – xy2 = 5x + 5xy2.
Ответ: стандартный вид многочлена 5x + 5xy2. Данный многочлен — многочлен второй степени.
Многочлен приведен к стандартному виду.
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Разобраться в многочленах не так-то просто. В этой теме немало нюансов и подводных камней. Чтобы не запутаться в множестве похожих одно на другое определений, побольше практикуйтесь. Чтобы перейти на следующую ступень и начать выполнение арифметических действий с многочленами, важно научиться приводить многочлен к стандартному виду.