Что значит найдите значение выражения в математике 5 класс
Нахождение значения выражения, примеры, решения.
После того, как мы узнали что такое значение выражения, логичным будет разобраться с вопросом как найти значение выражения. Сейчас мы рассмотрим правила нахождения значений выражений. Начнем с числовых выражений, и будем продвигаться от самых простых случаев, когда выражение содержит лишь числа и соединяющие их знаки арифметических действий, и закончим общим случаем, когда в выражении, значение которого нужно найти, содержатся скобки, дроби, корни, степени и другие функции. В конце покажем, как находить значения буквенных выражений и выражений с переменными при выбранных значениях переменных. Всю теорию снабдим примерами с подробным описанием решений.
Навигация по странице.
Как найти значение числового выражения?
Разберемся с правилами, по которым вычисляются значения выражений.
Простейшие случаи
Знакомство с правилами нахождения значений выражений начнем со случаев, когда числовое выражение не содержит в своей записи ничего другого, кроме чисел и знаков арифметических действий. Эти случаи мы и назвали простейшими.
Чтобы успешно находить значения таких выражений, нужно уметь выполнять действия с различными числами, а также иметь представление о порядке выполнения действий в выражениях без скобок.
Итак, если числовое выражение составлено из чисел и знаков +, −, · и :, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.
Приведем решение примеров для пояснения.
Найдите значение выражения .
Подставляем полученные значения в исходное выражение: .
Осталось записать десятичную дробь в виде обыкновенной дроби , вспомнить правило вычитания отрицательных чисел
, сгруппировать и сложить обыкновенные дроби
, и сложить обыкновенную дробь с натуральным числом
.
Так мы нашли искомое значение выражения.
.
Со скобками
Теперь разберемся, как найти значение выражения, содержащего в своей записи скобки, указывающие порядок выполнения действий. При этом сначала следует находить значение выражений в скобках, придерживаясь принятого порядка выполнения действий, а затем выполнять остальные действия, что приведет к искомому значению исходного выражения. Это правило перекликается с порядке выполнения действий в выражениях без скобокпорядком выполнения действий в выражениях со скобками.
Покажем решение примера.
Аналогично находятся значения выражений, содержащих скобки в скобках. Удобно нахождение значения начинать со внутренних скобок и продвигаться к внешним.
Итак, в нахождении значений выражений со скобками нет ничего сложного, главное – соблюдать последовательность выполнения действий, и не допускать вычислительных ошибок.
С корнями
Числовые выражения, значения которых требуется найти, могут в своей записи содержать различные знаки, в частности, корни. Как найти значение корня, под которым стоит число, объясняет материал статьи извлечение корней.
А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, .
В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.
Найдите значение выражения с корнями .
Теперь вычислим значение второго корня из исходного выражения: .
Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: .
.
Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.
Каково значение выражения .
.
Со степенями
Когда в выражении, значение которого мы находим, присутствуют степени, то их значения вычисляются до выполнения остальных действий. Вычислению значений степеней чисел посвящена статья возведение в степень.
Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе свойств степени.
Найдите значение выражения .
Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем
.
Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из следующих пунктов.
Находим значение выражения с дробями
Числовые выражения в своей записи могут содержать дроби. Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.
Рассмотрим решение примера.
Найдите значение выражения с дробями .
В исходном числовом выражении три дроби и
. Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.
В числителе и знаменателе дроби находятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие:
.
Третья дробь в числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем
.
Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: .
.
Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений, базирующееся на выполнении действий с дробями и на сокращении дробей.
Найдите значение выражения .
Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: . После этого исходное выражение примет вид
. После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения:
.
.
С логарифмами
Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида . В основании логарифма и под его знаком находятся числовые выражения, находим их значения:
. Теперь находим логарифм, после чего завершаем вычисления:
.
Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием свойств логарифмов. При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений.
Найдите значение выражения с логарифмами .
Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:
.
Как найти значение тригонометрического выражения?
Когда числовое выражение содержит синус, косинус, тангенс, котангенс или арксинус, арккосинус, арктангенс, арккотангенс и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.
Найдите значение выражения .
.
Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения.
Чему равно значение тригонометрического выражения .
Преобразуем исходное выражение, используя тригонометрические формулы, в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:
Проделанные преобразования помогли нам найти значение выражения.
.
Общий случай
В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:
Перечисленные действия выполняются до получения конечного результата.
Найдите значение выражения .
Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?
Продвигаясь по записи слева на право, мы натыкаемся на дробь вида . Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.
В числителе мы имеем корень вида . Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения
. Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения
. Это мы можем сделать:
. Тогда
, откуда
и
.
Со знаменателем все просто: .
Таким образом, .
После подстановки этого результата в исходное выражение, оно примет вид . В полученном выражении содержится степень
. Чтобы найти ее значение, сначала придется найти значение показателя, имеем
.
Итак, .
.
Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.
Рациональные способы вычисления значений выражений
Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.
К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.
Нахождение значения буквенного выражения и выражения с переменными
Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.
Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.
Числовые и буквенные выражения
Числовые выражения: что это
Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.
Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.
Например:
Это простые числовые выражения.
Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:
Это сложные числовые выражения.
Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».
Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.
Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.
11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.
При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:
Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)
Часто бывает нужно сравнить два числовых выражения.
Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.
Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2
14 больше 4
14 > 4
6 + 8 > 2 * 2
Буквенные выражения
Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.
В буквенном выражение есть цифры, знаки арифметических действия и буквы.
Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.
Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.
У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:
Пример 1. Найдите значение выражения: 5 + x.
Пример 2. Найдите значение выражения: (4 + a) * (2 + x).
Выражения с переменными
Переменная — это значение буквы в буквенном выражении.
Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.
Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.
5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a
Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.
Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.
Задание раз.
Задание два.
Составьте буквенное выражение:
Сумма разности b и 345 и суммы 180 и x.
Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.
Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?
150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.
Ответ: Маша и Лена посмотрели всего 313 видео.
Урок 15 Бесплатно Числовые и буквенные выражения
Любые математические задачи и примеры записываются с помощью математического языка.
Математический язык- это язык, не требующий перевода, универсальный и понятный всем, имеющий четкую структуру и грамматику.
Верная математическая запись всегда точна, логична, компактна, удобна для понимания, однозначно отражает действие, операцию, понятие.
Определенная осмысленная последовательность знаков (чисел, букв), связанных между собой знаками арифметических операций, называют математическим выражением.
Математические выражения делят на числовые и буквенные.
На этом уроке вы познакомитесь с числовыми и буквенными выражениями.
Узнаете, какое выражение называют числовым, а какое буквенным.
Научитесь составлять числовые и буквенные выражения к задачам.
Выясните, как правильно записывать, читать и находить значение математических выражений.
Числовые выражения
Числовые выражения вам уже хорошо знакомы.
В начальных классах на уроках математики, решая задачи и примеры, вы составляли и записывали числовые выражения и находили значения этих выражений.
Числовое выражение- это запись, состоящая из чисел, арифметических операций, скобок и иных специальных математических символов.
Числовым выражением можно назвать только такую запись, которая является осмысленной и составлена согласно математическим правилам.
Рассмотрим примеры числовых выражений.
Не каждую математическую запись из символов и знаков можно считать числовым выражением.
Числовое выражение всегда ориентировано на то, чтобы операции, входящие в него, могли быть выполнены.
Если числовое выражение невозможно вычислить, то оно не имеет смысла.
Существуют такие математические записи, которые на первый взгляд можно принять за числовые выражения, но вычислить их невозможно.
Число 15 необходимо разделить на результат операции в скобках, а он равен нулю.
Математические равенства и неравенства выражениями не являются, но равенства и неравенства состоят из математических выражений.
Два числовых выражения, соединенные знаком равно «=», называют числовым равенством.
Два числовых выражения, соединенные знаками больше «>» или меньше « 4 не является числовым выражением, это неравенство.
Смысл решения любой задачи, любого примера заключается в том, чтобы найти значение выражения, которое превращает его в верное равенство.
Число, которое получается после выполнения всех арифметических операций, называют значением числового выражения.
Следовательно, чтобы найти значение числового выражения, необходимо выполнить в определенном порядке все арифметические операции, указанные в выражении.
У числового выражения значение только одно.
У меня есть дополнительная информация к этой части урока!
Порядок выполнения математических операций очень важен для получения верного значения числового выражения.
В математике порядок выполнения действий в выражении определяют сами арифметические операции и скобки, содержащиеся в данном выражении.
Таким образом, если в числовом выражении стоят скобки, то математическая операция, стоящая в них, выполняется в первую очередь.
Следующими выполняются последовательно слева направо операции умножения и деления, если такие присутствуют в выражении.
Последними выполняются действия сложения и вычитания так же в порядке их следования друг за другом слева направо.
Более подробно порядок выполнения арифметических операций будет рассмотрен несколькими уроками позже.
Важно уметь не только верно записывать числовые выражения, но и уметь их правильно читать.
Чтобы прочитать числовое выражение нужно определить, какая арифметическая операция является последней при вычислении значения этого выражения.
Так, например, если последнее по порядку действие было сложение, то выражение называют «суммой».
Если последним действием является вычитание, то выражение называют «разностью».
Следовательно, если последним действием является умножение, то выражение называют «произведением», если деление- «частным».
Умение составлять математические выражения и находить их значение используют при решении как простых, так и составных задач.
Рассмотрим пример решения составной задачи и выясним особенности процесса составления числовых выражений.
Известно, что любая составная задача содержит несколько простых.
Существуют различные способы оформления решения текстовых задач.
Чаще всего используют такие формы записи решения задач:
1. По действиям с пояснениями.
При решении составных задач важно выделить главное, сделать краткую запись, разделить задачу на простые, составить план решения.
В первый день собрали 12 кг клубники, а во второй день на 2 кг больше.
Сколько килограммов клубники собрали за эти два дня?
Запишем кратко условие задачи:
Изобразим к задаче рисунок в виде схемы.
Чтобы определить, сколько собрали клубники за два дня, необходимо знать, какое количество клубники было собрано в первый и во второй день.
Из условия задачи известно количество клубники, собранной в первый день.
Неизвестно количество клубники, собранной во второй день.
Когда будет известно сколько собрали клубники во второй день, можно узнать какое количество ягод собрали за два дня.
Задачу решаем в два действия (каждое действие поясним).
1. Выясним сколько килограммов ягод собрали во второй день.
Известно, что в первый день собрали 12 кг клубники. Так как во второй день собрали на 2 кг больше, то во второй день собрали столько же, как в первый, и еще 2 кг.
Выполним сложение чисел 12 и 2, получим выражение 12 + 2.
Найдем значение данного числового выражения:
12 + 2 = 14 (кг) клубники собрали во второй день.
2. Вторым действием определим общее количество ягод, собранных за два дня.
Необходимо сложить все ягоды, который собрали в первый и во второй день, получим следующее выражение: 12 + 14.
Найдем значение данного числового выражения:
12 + 14 = 26 (кг) клубники собрали за два дня.
Ответ: 26 кг.
Как нам уже известно, решение задачи можно записать не только по действиям, но и в форме выражения.
Запись решения составной задачи с помощью составления по ней итогового числового выражения позволяет увидеть ход решения в целом, и такая запись сокращает время оформления задачи.
Составим числовое выражение для решения нашей задачи.
Согласно рассуждениям, изложенным выше, имеем следующие данные:
Определим общее количество ягод, собранных за два дня.
Сложив все ягоды, собранные в первый и во второй день, получим следующее числовое выражение:
12 + (12 + 2).
Вычислим значение данного выражения, выполнив последовательно все действия в нем.
Тогда запись решения задачи будет выглядеть так:
12 + (12 + 2) = 12 + 14 = 26 (кг) клубники собрали за два дня.
Ответ: 26 кг.
Попробуем решить вторую задачу.
Задача 2.
В первый день собрали 12 кг клубники, а во второй день на 5 кг больше.
Сколько килограммов клубники собрали за эти два дня?
Скорее всего вы заметили, что первая и вторая задачи отличаются только одним числом, а именно число 2 заменено на число 5.
Остальные условия задачи остались прежние.
Все логические рассуждения во второй задаче аналогичны рассуждениям первой.
Таким образом, имеем следующие данные:
Определим общее количество ягод, собранных за два дня.
Сложив все ягоды, собранные в первый и во второй день, получим следующее выражение:
12 + (12 + 5).
Вычислим значение данного выражения, выполнив последовательно все действия в нем.
Тогда запись решения задачи будет выглядеть так:
12 + (12 + 5) = 12 + 17 = 29 (кг) клубники собрали за два дня.
Ответ: 29 кг.
Пройти тест и получить оценку можно после входа или регистрации
Буквенные выражения
Рассмотрим еще одну такую же задачу, как первая и вторая, рассмотренные выше, но число, которое менялось в первой и во второй задаче заменим на ☐ пустое окошко, в которое можно вписать любое значение.
Тогда получим следующую задачу:
В первый день собрали 12 кг клубники, а во второй день на ☐ кг больше.
Сколько килограммов клубники собрали за эти два дня?
В математике принято обозначать переменное число не пустым окошком, а буквой.
Для нашей задачи вместо пустого окошка поставим латинскую букву «а».
По аналогии с уже решенными задачами математическое выражение для данной задачи будет следующее: 12 + (12 + а).
Если вместо буквы а подставлять различные числа, то каждый раз будем получать различные числовые выражения и, как следствие, различные значения.
Числовое выражение, в котором числа обозначены цифрами и буквами, называют буквенным выражением.
Соответственно, буквенное выражение отличается от числового тем, что содержит букву.
Буквы, которые содержатся в буквенных выражениях, называются переменными.
Для обозначения чисел буквами используют строчные буквы латинского алфавита.
Буквенные выражения должны быть составлены согласно математическим правилам и по такому же принципу, как числовые выражения.
1. Буквенные выражения используют для математических доказательств, для описания свойств, правил, законов.
Например, переместительное свойство сложения, записанное с помощью буквенных выражений, выглядит так: a + (b + c) = (a + b) + c.
Сочетательное свойство сложения, записанное с помощью буквенных выражений, выглядит так: a + b = b + а.
2. Правило, записанное в виде равенства двух буквенных выражений, называется формулой.
Формула подобно универсальной заготовке позволяет описывать различные процессы, действия, состояния и др.
Формула устанавливает взаимосвязь между величинами.
Например, формула для определения периметра треугольника, записанная с помощью буквенных выражений, выглядит так: P = a + b + c, где
P— это периметр треугольника
а, b, c— это стороны треугольника.
В данном случае буквенная запись позволяет определить периметр (Р) любого треугольника, независимо от размеров его сторон.
3. Умение составлять буквенные выражения и находить их значения при заданном значении переменной используют при решение различных задач
Пройти тест и получить оценку можно после входа или регистрации