Что значит начальная фаза колебаний
Начальная фаза колебаний
Определение фазы колебаний
Начальная фаза колебаний и способ возбуждения колебаний
Возведем в квадрат оба уравнения (2) и сложим их:
Из выражения (4) имеем:
Разделим уравнение (3) на (2), получим:
с начальными условиями:
\[x\left(0\right)=x_0;;\ \dot
При таком возбуждении колебания пружинного маятника можно описывать выражением:
Сложение колебаний и начальная фаза
Тело, совершающее колебания, способно принимать участие в нескольких колебательных процессах одновременно. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.
Допустим, что два колебания с равными частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:
тогда амплитуда суммарного колебания равна:
В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:
что говорит о движении точки по прямой линии.
что означает, траектория движения эллипс.
Примеры задач с решением
начальными условиями будут:
Решение. Запишем уравнение гармонических колебаний по оси X:
Преобразуем заданные в условии задачи уравнения к этому же виду:
Сравнивая уравнения (2.2) с (2.1) получим, что начальные фазы колебаний равны:
Изобразим на рис.1 векторную диаграмму колебаний.
Фаза колебаний.
Фаза колебаний — это аргумент периодически изменяющейся функции, описывающей колебательный или волновой процесс. Для гармонических колебаний:
где φ = ωt + φ0 — фаза колебания, А — амплитуда, ω — круговая частота, t — время, φ0 — начальная (фиксированная) фаза колебания; в момент времени t = 0φ = φ0. Фаза выражается в радианах.
Фаза гармонического колебания при постоянной амплитуде определяет не только координату колеблющегося тела в любой момент времени, но и скорость и ускорение, которые тоже изменяются по гармоническому закону (скорость и ускорение гармонических колебаний — это первая и вторая производные по времени функции (см. рис. ниже), которые, как известно, снова дают синус и косинус). Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени.
Два колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами. Так как ω = 2π/Т, то
Отношение t/T показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выраженному в долях периода, соответствует значение фазы, выраженной в радианах.
Сплошная кривая на рисунке — это зависимость координаты от времени и одновременно от фазы колебаний (верхние и нижние значения на оси абсцисс соответственно) для точки, совершающей гармонические колебания по закону:
Здесь начальная фаза равна нулю φ0 = 0. В начальный момент времени амплитуда максимальна. Это соответствует случаю колебаний тела, прикрепленного к пружине (или маятника), которое в начальный момент времени отвели от положения равновесия и отпустили. Описание колебаний, начинающихся из положения равновесия (например, при кратковременном толчке покоящегося шарика), удобнее вести с помощью функции синуса:
Как известно, cos φ = sin (φ + π/2), поэтому колебания, описываемые уравнениями x = xm cos ω0 t и x = xm sin ω0 t, отличаются друг от друга только фазами. Разность фаз, или сдвиг фаз, составляет π/2. Чтобы определить сдвиг фаз, нужно колеблющуюся величину выразить через одну и ту же тригонометрическую функцию — косинус или синус. Пунктирная кривая на рисунке выше (это график уравнения x = xm sin ω0 t) сдвинута относительно сплошной на π/2.
Начальная фаза колебаний – точки, формулы, единица измерения в физике
Одной из характеристик колебательного процесса в физике является фаза. Особенно важным этот параметр становится, когда сравниваются два колебания одинаковой частоты. Начальная фаза колебаний характеризует начало отклонения, когда система выводится из равновесия.
Понятие фазы колебательного процесса
Любой колебательный процесс может быть представлен в виде бесконечной суммы простейших гармонических колебаний. Гармоническое колебание — это колебание, которое совершается по закону круговых функций (синуса или косинуса).
Рис. 1. График гармонической функции.
Формула гармонического колебания имеет следующий вид:
$$X = X_m sin(omega t+varphi)$$
Рис. 2. Фаза колебания.
Значение начальной фазы колебательного процесса
Точка начальной фазы колебаний характеризует значение параметра функции в нулевой момент времени. Учитывая, что для того, чтобы система начала колебаться, она должна быть выведена из положения равновесия, начальная фаза колебаний характеризует именно это начальное отклонение, которое хорошо видно на графике функции.
Для нитяного или пружинного маятника зачастую начальная фаза колебаний также характеризует точку максимального отклонения.
Но наибольшее значение начальная фаза колебаний принимает для случая, когда происходит два и более колебательных процесса одинаковой частоты. При одинаковой частоте разность фаз колебаний в этих процессах будет постоянна. Следовательно, именно от начальной фазы зависит взаимное значение колебаний.
Например, если в обоих колебательных процессах, происходящих с равной частотой, начальные фазы будут равны, то нулевые и амплитудные значения обоих процессов будут всегда достигаться одновременно. Говорят, что процессы происходят синфазно.
При других начальных фазах такие процессы будут меняться «с отставанием» или «с опережением», в зависимости от конкретных значений. И, поскольку их частота одинакова, то отставание или опережение будет постоянно. Нулевые и амплитудные значения никогда не будут достигнуты одновременно.
Рис. 3. Разность фаз колебаний.
Что мы узнали?
Фаза колебания — это аргумент гармонической функции в ее формуле. Фактически это конкретный момент колебания. Начальная фаза — это аргумент в нулевой момент времени. Наибольшее значение начальная фаза колебаний играет при сравнении различных колебаний с одинаковой частотой.
Начальная фаза
Определение начальной фазы колебаний
Весь аргумент периодической функции (в данном случае косинуса:$\ (<\omega >_0t+\varphi )$), описывающей колебательный процесс, называют фазой колебаний.
Зная амплитуду колебаний и фазу, используя уравнение (1), определяют механическое состояние системы. В начальный момент времени состояние системы определяют амплитуда колебаний и начальная фаза.
Значения амплитуды и начальной фазы задаются в начальных условиях, это означает, что они зависят от способа возбуждения колебаний.
Фазы колеблющейся величины, ее скорости и ускорения
Метод векторных диаграмм
Сложение колебаний и начальная фаза
Тело, совершающее колебания, может участвовать в нескольких колебательных процессах. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.
Допустим, что два колебания с одинаковыми частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:
тогда амплитуда результирующего колебания равна:
В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:
что говорит о движении точки по прямой линии.
что означает, траектория движения эллипс.
Примеры задач с решением
Задание. Каково уравнение траектории движения точки, если она участвует в двух взаимно перпендикулярных колебаниях, которые заданы уравнениями:
Решение. Рассмотрим заданные уравнения колебаний:
Из первого уравнения системы мы видим, что начальная фаза первого колебания равна нулю ($<\varphi >_1=0$)
Второе уравнение системы преобразуем к виду:
Из уравнения (2.2) видим, что уравнение:
это уравнение прямой, проходящей через начало координат (рис.2):
Начальная фаза колебаний
Всего получено оценок: 247.
Всего получено оценок: 247.
Одной из характеристик колебательного процесса в физике является фаза. Особенно важным этот параметр становится, когда сравниваются два колебания одинаковой частоты. Начальная фаза колебаний характеризует начало отклонения, когда система выводится из равновесия.
Понятие фазы колебательного процесса
Любой колебательный процесс может быть представлен в виде бесконечной суммы простейших гармонических колебаний. Гармоническое колебание — это колебание, которое совершается по закону круговых функций (синуса или косинуса).
Рис. 1. График гармонической функции.
Формула гармонического колебания имеет следующий вид:
$$X = X_m sin(\omega t+\varphi)$$
Рис. 2. Фаза колебания.
Значение начальной фазы колебательного процесса
Точка начальной фазы колебаний характеризует значение параметра функции в нулевой момент времени. Учитывая, что для того, чтобы система начала колебаться, она должна быть выведена из положения равновесия, начальная фаза колебаний характеризует именно это начальное отклонение, которое хорошо видно на графике функции.
Для нитяного или пружинного маятника зачастую начальная фаза колебаний также характеризует точку максимального отклонения.
Но наибольшее значение начальная фаза колебаний принимает для случая, когда происходит два и более колебательных процесса одинаковой частоты. При одинаковой частоте разность фаз колебаний в этих процессах будет постоянна. Следовательно, именно от начальной фазы зависит взаимное значение колебаний.
Например, если в обоих колебательных процессах, происходящих с равной частотой, начальные фазы будут равны, то нулевые и амплитудные значения обоих процессов будут всегда достигаться одновременно. Говорят, что процессы происходят синфазно.
При других начальных фазах такие процессы будут меняться «с отставанием» или «с опережением», в зависимости от конкретных значений. И, поскольку их частота одинакова, то отставание или опережение будет постоянно. Нулевые и амплитудные значения никогда не будут достигнуты одновременно.
Что мы узнали?
Фаза колебания — это аргумент гармонической функции в ее формуле. Фактически это конкретный момент колебания. Начальная фаза — это аргумент в нулевой момент времени. Наибольшее значение начальная фаза колебаний играет при сравнении различных колебаний с одинаковой частотой.