Π§ΡΠΎ Π·Π½Π°ΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ
Π ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°Π·ΠΎΠ±ΡΠ°Π»ΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. Π ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΡΠΈΠΏΠΎΠ²ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΌΠ΅ΡΡΠΎ Β« y Β» Π½ΠΎΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
0 = x 2 β 3
x 2 β 3 = 0
x1;2 =
0 Β± β 0 2 β 4 Β· 1 Β· (β3) |
2 Β· 1 |
x1;2 =
Β± β 12 |
2 |
x1;2 =
Β± β 4 Β· 3 |
2 |
x1;2 =
Β± 2β 3 |
2 |
x1;2 = Β±β 3
x1 = β 3 | x2 = β β 3 |
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ Β« x Β» ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ Β« x Β» ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π½ΡΠΆΠ½ΠΎ:
ΠΡΠΈ ΠΊΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ Β« x Β» ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« β3 Β».
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΌΠ΅ΡΡΠΎ Β« y = β3 Β» ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Β« x Β».
β3 = x 2 β x β 3
x 2 β x β 3 = β3
x 2 β x β 3 + 3 = 0
x 2 β x = 0
x1;2 =
1 Β± β 1 2 β 4 Β· 1 Β· 0 |
2 Β· 1 |
x1;2 =
1 Β± β 1 |
2 |
x1;2 =
1 Β± 1 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 1 | x2 = 0 |
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΈ ΠΏΡΡΠΌΠΎΠΉ
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΏΡΡΠΌΠΎΠΉ Π½ΡΠΆΠ½ΠΎ:
ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Β« y = x 2 Β» ΠΈ ΠΏΡΡΠΌΠΎΠΉ Β« y = 3 β 2x Β».
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΡΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Β« x Β».
x 2 = 3 β 2x
x 2 β 3 + 2x = 0
x 2 + 2x β 3 = 0
x1;2 =
2 Β± β 2 2 β 4 Β· 1 Β· (β3) |
2 Β· 1 |
x1;2 =
2 Β± β 4 + 12 |
2 |
x1;2 =
2 Β± β 16 |
2 |
x1;2 =
2 Β± 4 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 3 | x2 = β1 |
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² Π»ΡΠ±ΡΡ ΠΈΠ· Π·Π°Π΄Π°Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Β« x Β», ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β« y Β» ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ.
1) x = 3
y = 3 β 2x
y(3) = 3 β 2 Β· 3 = 3 β 6 = β3
(Β·) A (3; β3) β ΠΏΠ΅ΡΠ²Π°Ρ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ.
2) x = β1
y = 3 β 2x
y(β1) = 3 β 2 Β· (β1) = 3 + 2 = 5
(Β·) B (β1; 5) β Π²ΡΠΎΡΠ°Ρ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ Π² ΠΎΡΠ²Π΅Ρ.
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ Π»ΠΈ ΡΠΎΡΠΊΠ° Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π΅ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ (ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Ox Β» Π²ΠΌΠ΅ΡΡΠΎ Β« x Β», Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Oy Β» Π²ΠΌΠ΅ΡΡΠΎ Β« y Β») ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠ΅ΡΡ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ
ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘Π½Π°ΡΠ°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΡ Β« Ox Β». ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π²ΡΠ³Π»ΡΠ΄ΡΡ ΡΠ°ΠΊ:
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π²ΡΡΠ΅, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Β« y Β» ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Β« Ox Β» ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Β« y = 0 Β» Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Β« y = x 2 β3x + 2 Β» ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Ox Β».
0 = x 2 β3x + 2
x 2 β3x + 2 = 0
x1;2 =
3 Β± β 3 2 β 4 Β· 1 Β· 2 |
2 Β· 1 |
x1;2 =
3 Β± β 9 β 8 |
2 |
x1;2 =
3 Β± β 1 |
2 |
x1;2 =
3 Β± 1 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 2 | x2 = 1 |
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Β« Oy Β».
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π²ΡΡΠ΅, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Β« x Β» ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Β« Oy Β» ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Β« x = 0 Β» Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Β« y = x 2 β3x + 2 Β» ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠΎ ΠΎΡΠΈ Β« Oy Β».
y(0) = 0 2 β 3 Β· 0 + 2 = 2
ΠΡΠΏΠΈΡΠ΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ: (Β·) C (0; 2)
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π² ΠΎΡΠ²Π΅Ρ Π²ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΠΌΠΈ.
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ x ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ:
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, ΠΎΡΠ²Π΅ΡΠΈΡΡ: ΠΡΠΈ ΠΊΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ Β« x Β» ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ 1) ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ; Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ, Π³Π΄Π΅ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Β« Ox Β» ΠΏΡΡΠΌΡΠ΅.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π»Π°ΡΡΠΈ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠΎΠ΄ΠΏΠΈΡΠ΅ΠΌ Π½Π°Π΄ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΡΡ, ΠΊΠ°ΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Β« x Β» Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ.
ΠΡΠ²Π΅Ρ: ΠΏΡΠΈ Β« x Β» ΠΈ Β« x > 2 Β» ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ; ΠΏΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ?
ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· Π½Π°Ρ Π²ΡΡΡΠ΅ΡΠ°Π»ΡΡ Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ Π½Π° ΡΡΠΎΠΊΠ°Ρ , ΡΠ°ΠΊ ΠΈ Π² ΠΆΠΈΠ·Π½ΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΈ, ΠΊΠ°ΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π²ΠΎΠ·Π΄ΡΡ Π° Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π²ΠΎΠ·Π΄ΡΡ Π° Π±ΡΠ»Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Ρ 0 ΡΠ°ΡΠΎΠ² Π΄ΠΎ 6 ΡΠ°ΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ Ρ 20 Π΄ΠΎ 24 ΡΠ°ΡΠΎΠ². ΠΡΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° ΠΏΠΎΠ²ΡΡΠ°Π»Π°ΡΡ Π΄ΠΎ 14 ΡΠ°ΡΠΎΠ², Π° Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΠ½ΠΈΠΆΠ°Π»Π°ΡΡ. Π’ΠΎ Π΅ΡΡΡ ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΌΡ ΡΠΌΠΎΠ³Π»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π²ΠΎΠ·Π΄ΡΡ Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΡΠΎΠΊ.
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅, Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½ΡΠ»ΠΈ, ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°
ΠΡΡΠ°Π½ΠΎΠ²ΠΈΠΌΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΉ.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΡΠ»Ρ. ΠΡΠ»ΠΈ ΡΠΌΠΎΡΡΠ΅ΡΡ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅, ΡΠΎ Π±Π΅ΡΠ΅ΠΌ ΡΠΎΡΠΊΠΈ, Π³Π΄Π΅ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Ρ .
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΠ½ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Ρ
ΠΏΡΠΈ Ρ
=-1; Ρ
=4; Ρ
=6. ΠΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ.ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅!
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΎ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°. ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ Ρ=k/x, Π³Π΄Π΅ Ρ Π½Π΅ ΡΠ°Π²Π½ΠΎΠ΅ 0 ΡΠΈΡΠ»ΠΎ.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=k/x Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ: ΠΠΎ Π΄Π°Π½Π½ΠΎΠΌΡ ΡΠΈΡΡΠ½ΠΊΡ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π½ΡΠ»Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ?
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½ΡΠ»Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΈΠΌΠ΅Ρ β1. ΠΠ°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ (Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ):
Π°) ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½ΡΠ»Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π² Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π²ΠΌΠ΅ΡΡΠΎ Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΡΠΈΡΠ»ΠΎ 0, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ Ρ (Ρ ;0). ΠΠ°ΠΌ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ . ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ 0 = β11Ρ +12. Π Π΅ΡΠ°Π΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ, Π² Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ, ΠΌΠ΅Π½ΡΡ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ: 11Ρ =22
Π±) ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π²ΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π²ΠΌΠ΅ΡΡΠΎ Ρ ΡΠΈΡΠ»ΠΎ 0 ΠΈ ΡΠ΅ΡΠ°Π΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° 0=(Ρ + 76)(Ρ β 95). ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π²Π½ΠΎ 0 ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π²Π΅Π½ 0.
ΠΠ½Π°ΡΠΈΡ, Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΎ ΡΠΈΡΠ»Π° (-76) ΠΈ 95.
ΠΡΠΈΠΌΠ΅Ρ β2. ΠΠ°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=f(x) ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ.
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ Ρ ΠΈ Π²ΡΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ . ΠΡΠΎ (-4,9); (-1,2); 2,2 ΠΈ 5,7. Π£ Π½Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΎΡ ΡΠ°Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ (ΡΠΎ Π΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π° ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π»ΠΈΠ±ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅), Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°ΠΌΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π°.
ΠΡΠΈΠΌΠ΅Ρ β3. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [-2; 10] Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ=f(x).
Π€ΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ (-1; 3) ΠΈ (8; 10]. ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π»ΠΈΠ½ΠΈΠΈ ΡΠΈΠ½Π΅Π³ΠΎ ΡΠ²Π΅ΡΠ°.
ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠ³ΡΡ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ. ΠΡΠΎ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ . Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΠΎ ΡΠΈΡΡΠ½ΠΊΡ.
ΠΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΠΎΡ 2 Π΄ΠΎ 5. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ° ΡΠ°ΡΡΡ Π²ΡΠ΄Π΅Π»Π΅Π½Π° Π·Π΅Π»Π΅Π½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. Π‘Π»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ ΡΡΠ° ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΈΠ΄Π΅Ρ Π²Π½ΠΈΠ·. Π’ΠΎ Π΅ΡΡΡ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ [2;5] ΡΡΠ½ΠΊΡΠΈΡ Ρ=f(x) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠ΅ΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π΅ΡΠ»ΠΈ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ; ΡΡΠ½ΠΊΡΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π΅ΡΠ»ΠΈ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ΅ΡΠΎΠ΄ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ²: ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ΅ΡΠΎΠ΄ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² ΠΏΡΠΈΠ½ΡΡΠΎ ΡΡΠΈΡΠ°ΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΌ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ². ΠΠ½ΠΎΠ³Π΄Π° ΡΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ². ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΎΠ½ ΠΊΠ°ΠΊ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Π΄ΡΡΠ³ΠΈΡ Π²ΠΈΠ΄ΠΎΠ². Π Π½Π°ΡΠ΅ΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ ΠΌΡ ΠΏΠΎΡΡΠ°ΡΠ°Π»ΠΈΡΡ ΡΠ΄Π΅Π»ΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌ Π°ΡΠΏΠ΅ΠΊΡΠ°ΠΌ Π²ΠΎΠΏΡΠΎΡΠ°.
Π§ΡΠΎ ΠΆΠ΄Π΅Ρ Π²Π°Ρ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅? ΠΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ. ΠΠ°ΡΡΠΎΠ½Π΅ΠΌ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π°.
ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΌΡ ΡΠ΄Π΅Π»ΡΠ΅ΠΌ Π½ΡΠ°Π½ΡΠ°ΠΌ ΡΠ΅ΠΌΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΡΠ½ΠΎ Π½Π΅ Π·Π°ΡΡΠ°Π³ΠΈΠ²Π°ΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π·Π½Π°ΠΊΠΎΠ² Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°Ρ ΠΈ ΡΠ°ΠΌ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² Π² ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ Π±Π΅Π· Π΅Π³ΠΎ ΠΏΡΠΈΠ²ΡΠ·ΠΊΠΈ ΠΊ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°ΠΌ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ
ΠΡΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ, ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π·Π½Π°ΠΊΠΎΠΌΡΡΠ²ΠΎ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ Π°Π»Π³Π΅Π±ΡΡ? ΠΠ±ΡΡΠ½ΠΎ Π²ΡΠ΅ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Π²ΠΈΠ΄Π° f(x) ΠΈΠ»ΠΈ β₯). ΠΠ΄Π΅ΡΡ f(x) ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ². ΠΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΊΠ°ΠΊ:
ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ Π΄Π²ΡΡΠ»Π΅Π½ΠΎΠ² Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ 1 ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ ;
ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ΅Ρ ΡΠ»Π΅Π½ΠΎΠ² ΡΠΎ ΡΡΠ°ΡΡΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ 1 ΠΈ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΠ°ΠΊΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²:
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² ΡΠ°ΠΊΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°, ΠΊΠ°ΠΊ ΠΌΡ ΠΏΡΠΈΠ²Π΅Π»ΠΈ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ , ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ²:
Π§Π΅ΡΡΠ΅ΠΆ, Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ ΡΠ°Π±ΠΎΡΠ°ΡΡ, ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π²ΠΈΠ΄. ΠΠ·Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΌΠΎΠ³ΡΡ ΠΏΠ΅ΡΠ΅Π³ΡΡΠΆΠ°ΡΡ ΡΠΈΡΡΠ½ΠΎΠΊ ΠΈ Π·Π°ΡΡΡΠ΄Π½ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΌΠ°Π»ΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ²Π°ΡΡ ΠΌΠ°ΡΡΠ°Π±. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠΎ ΠΌΠ΅ΡΠ΅ ΡΠΎΡΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ ΡΠΎ ΡΡΡΠΎΠ³ΠΈΠΌΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°ΠΌΠΈ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ Π² Π²ΠΈΠ΄Π΅ ΠΊΡΡΠ³Π° Ρ Π½Π΅Π·Π°ΠΊΡΠ°ΡΠ΅Π½Π½ΡΠΌ (ΠΏΡΡΡΡΠΌ) ΡΠ΅Π½ΡΡΠΎΠΌ. Π ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΡΡΡΠΎΠ³ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² ΡΠΎΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π½ΡΠ»ΡΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΌΡ Π±ΡΠ΄Π΅ΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ ΠΏΡΡΡΡΠΌΠΈ, Π° Π²ΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΠ±ΡΡΠ½ΡΠΌΠΈ ΡΠ΅ΡΠ½ΡΠΌΠΈ.
ΠΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ°Π·Π±ΠΈΠ²Π°ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ². ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π°ΠΌ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
ΠΠ°ΡΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ²
ΠΡΠ½ΠΎΠ²Π°Π½ ΠΏΠΎΠ΄Ρ ΠΎΠ΄, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΠΉ Π² ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ², ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π΅ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ: ΡΡΠ½ΠΊΡΠΈΡ ΡΠΎΡ ΡΠ°Π½ΡΠ΅Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΉ Π·Π½Π°ΠΊ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b), Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΡΠ° ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° ΠΈ Π½Π΅ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΡΠ»Ρ. ΠΡΠΎ ΠΆΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎ Π΄Π»Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΡ Π»ΡΡΠ΅ΠΉ (ββ, a) ΠΈ (a, +β).
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅ΡΡΡ ΡΠ΅ΠΎΡΠ΅ΠΌΠΎΠΉ ΠΠΎΠ»ΡΡΠ°Π½ΠΎ-ΠΠΎΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΏΠΎΡΠΎΠ±ΠΈΡΡ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ Π²ΡΡΡΠΏΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡΠΌ.
ΠΠΎΠ·ΡΠΌΠ΅ΠΌ Π»ΡΠ±ΠΎΠΉ ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² ΠΈ ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ Π½Π° Π½Π΅ΠΌ, ΡΡΠΎ Π½Π° Π²ΡΠ΅ΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΉ Π·Π½Π°ΠΊ. ΠΡΡΡΡ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ (ββ, β1). ΠΠΎΠ·ΡΠΌΠ΅ΠΌ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ t ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°. ΠΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ t
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 40 ΠΌΠΈΠ½ΡΡ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π΅Π΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΌΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π΅Π΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ. ΠΠ·ΡΡΠΈΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ, ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ , ΠΌΠ΅ΡΠΎΠ΄Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠ΅ΠΆΠ΄Π΅, ΡΠ΅ΠΌ Π½Π°ΡΠ°ΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°, ΠΎΡ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π€ΡΠ½ΠΊΡΠΈΠΈ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΡΠΌΡΡ ΠΈΠ»ΠΈ ΠΊΡΠΈΠ²ΡΡ .
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π»ΡΠ±ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ x ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π»ΡΠ±ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y. ΠΠ΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π½Π°Π·ΡΠ²Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΈΠ»ΠΈ ΠΏΠΎ Π΄ΡΡΠ³ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ. Π§ΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
ΠΠ°Π½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ x ΠΈ y Π² Π°Π»Π³Π΅Π±ΡΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ. ΠΠ°ΠΏΠΈΡΡΠ²Π°ΡΡ Π΅Π΅ Π² Π²ΠΈΠ΄Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x)
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΡΠ½ΠΊΡΠΈΡ, ΡΡΠΎ ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
ΠΠ°Π»Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’ΠΎ Π΅ΡΡΡ, Π½Π° ΠΊΠ°ΠΊΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΠ΅ΡΡΡ.
ΠΠ±Π»Π°ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π²ΠΈΠ΄Π΅ Π³ΡΠ°ΡΠΈΠΊΠ°. ΠΠ΄Π΅ Π·Π° ΠΎΡΠ½ΠΎΠ²Ρ Π±Π΅ΡΡΡΡΡ ΠΎΡΠΈ Ρ ΠΈ y.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = z 2 β ΡΡΠΎ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ΄ΡΡ Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. Π Π²ΠΈΠ΄Π΅ Π·Π°ΠΏΠΈΡΠΈ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ: f(Ρ): Ρ β₯ 0. ΠΠ΅ Π²ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ°ΠΌΠΈ, Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ D(f). ΠΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π°ΡΠ΅. D(sin) β ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠ½ΡΡ, D(arcsin) β ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π°ΡΠΊΡΠΈΠ½ΡΡ. ΠΠΎΠΆΠ½ΠΎ ΡΠ°ΠΊΠΆΠ΅ Π·Π°ΠΏΠΈΡΠ°ΡΡ D(f), Π³Π΄Π΅ f β ΡΡΠ½ΠΊΡΠΈΡ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ Π°ΡΠΊΡΠΈΠ½ΡΡΠ°. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΡ D(f) = x. Π’Π°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π°ΡΠΊΡΠΈΠ½ΡΡΠ° Π·Π°ΠΏΠΈΡΡ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ: D (arcsin) = [-1, 1]. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π½ΠΎ ΡΠ°ΡΡΠΎ ΠΎΡΠ²Π΅Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π³ΡΠΎΠΌΠΎΠ·Π΄ΠΊΠΈΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠ»Ρ ΡΠΊΠ°Π·Π°Π½ΠΈΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠΈΡΠ΅Π» Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ:
ΠΡΠ»ΠΈ Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π½Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ Π³ΡΠ°Π½ΠΈΡΡ, Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π·Π½Π°ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ ΠΈΠ»ΠΈ ΠΏΠ»ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠ»ΠΈ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ Π»Π΅Π²Π°Ρ Π³ΡΠ°Π½ΠΈΡΠ°, Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ.
Π ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ², ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ
ΠΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° ΠΎΡ 1 Π΄ΠΎ 9, ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ Π·Π°ΠΏΠΈΡΠΈ. [1;9]
ΠΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΈΠΌΠ΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄: (0; +);
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½ΠΎΠ»Ρ, Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠΈΡΠ»ΠΎ, ΡΠΎ Π²ΠΎΠ·Π»Π΅ Π½Π΅Π³ΠΎ ΡΡΠ°Π²ΠΈΡΡΡ ΠΊΡΡΠ³Π»Π°Ρ ΡΠΊΠΎΠ±ΠΊΠ°.
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ°ΡΡ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ D(y).
Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΄Π²Π΅ Π³Π»Π°Π²Π½ΡΡ Π·Π°ΠΏΡΠ΅ΡΠ΅Π½Π½ΡΡ (Π½Π΅Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ ) ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ:
ΠΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΡΡΡΠΏΠ°ΡΡ Π² ΡΠΈΠ»Ρ Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΡΡΠΎΡΠ½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = N, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ f(x) = N, Π³Π΄Π΅ N β Π»ΡΠ±ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°.
ΠΠΎΡΡΠΎΡΠ½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΡΠ΅Π³Π΄Π° Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ ΠΊΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΡΠ΅Π³Π΄Π° ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ, ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ:
ΠΡΠ»ΠΈ k β Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΠΎΠ±Π»Π°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π»ΡΠ±ΡΡ , ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π»: (-β, +β).
ΠΠΎΠ³Π΄Π° ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄ D(f) = [0, +β).
ΠΠΎΠ³Π΄Π° k β ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ (-β, 0) βͺ (0, +β).
ΠΠ»Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ , a ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ (0, +β).
ΠΡΠ»ΠΈ k ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠΈΡΠ΅Π», ΠΊΡΠΎΠΌΠ΅ Π½ΡΠ»Ρ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½ΠΎΠ»Ρ Π½Π΅Π»ΡΠ·Ρ Π²ΠΎΠ·Π²Π΅ΡΡΠΈ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ, Π° Π»ΡΠ±ΠΎΠ΅ Π΄ΡΡΠ³ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² Π½ΡΠ»Π΅Π²ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π²Π½ΠΎ 1.
Π’ΠΎ Π΅ΡΡΡ, ΠΏΡΠΈ k = 0, y =x0 = 1, Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ (-β, 0) βͺ (0, +β).
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ: y=k x
Π³Π΄Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x β ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ;
k β ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ ΠΈ Π½Π΅ ΡΠ°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ R.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, Π΄Π»Ρ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ: (ββ, +β).
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΠΊΠ°ΠΊ: y=log n k
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅, Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈΠΌΠ΅Ρ β1
y=ln x, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°. D(y)=(0;+).
ΠΠ° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΈ ΡΡΠ½ΠΊΡΠΈΡ Π±ΡΠ΄Π΅Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡ Π½Π° Π²ΡΠ΅ΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΎΠ΄Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΠΏΡΠ΅Π΄Π΅Π» ΠΏΡΠΈ, ΡΡΡΠ΅ΠΌΠ»Π΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π½ΡΠ»Ρ ΠΈ ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ.
ΠΠ· Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡ ΠΎΡ ΠΌΠΈΠ½ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π΄ΠΎ ΠΏΠ»ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ.
ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π» β ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° ln.
ΠΡΠ²Π΅Ρ: ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π», ΡΡΠΎ ΠΈ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ln.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ, ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ
ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π», Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ±Π»Π°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ, ΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ.
Π€ΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌΠΈ, ΠΊΠ°ΠΊ ΡΠ²Π΅ΡΡ Ρ, ΡΠ°ΠΊ ΠΈ ΡΠ½ΠΈΠ·Ρ.
y = sin x ΠΈ y = cos x
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ ΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Ρ -1 β€ y β€ 1
ΠΠ±Π»Π°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π½Π³Π΅Π½Ρ tg x, ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ .
ΠΠ±Π»Π°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ y = Ρtg x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΈΡΠ΅Π» .
ΠΠ° Π½ΠΈΠΆΠ΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΠΏΠΈΡΠ°Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ, ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΡΠΈ Π·Π°Π΄Π°Π½Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
ΠΡΠΈΠΌΠ΅Ρ β1
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ sin x
ΠΠ°Π½Π½ΡΠΉ Π²ΠΈΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ. ΠΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ°Π²Π½ΡΠ΅ΡΡΡ 2Ο
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅: (0;2Ο).
ΠΡΠΈΠΌΠ΅Ρ β2
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ cos x.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ -1;
ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ°Π²Π½ΡΠ΅ΡΡΡ -1, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ ΡΡΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ°Π²Π½ΡΠ΅ΡΡΡ -1.
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ 1. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΈΡΠ»ΠΎ 1.
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π±ΡΠ΄Π΅Ρ ΠΎΡ ΠΌΠΈΠ½ΡΡ ΠΎΠ΄Π½ΠΎ Π΄ΠΎ ΠΏΠ»ΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ. [-1;1].
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠ½ΠΎΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΠ»ΠΈ ΡΠ°ΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ Π² Π²ΠΈΠ΄Π΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π΅ ΠΈΠΌΠ΅ΡΡ ΠΌΠ΅ΡΡΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ°ΡΡΠΈΠ΅ΡΡ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ cos x, cos (15Ξ±), cos(5-11x) ΠΈ ΡΠ°ΠΊ Π΄Π°Π»Π΅Π΅, Π±ΡΠ΄Π΅Ρ ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎ ΡΠ°Π²Π½ΡΡΡΡΡ -1;
Π‘Π°ΠΌΡΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ cos x, cos(4Ο), cos(5Ρ +3) ΡΠ°Π²Π½ΡΠ΅ΡΡΡ 1.
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y=cos x β ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ [-1;1].
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠ°, Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΡ [0;1]. ΠΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Π² ΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ.
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ° β ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ [0;1]
ΠΡΠΈΠΌΠ΅Ρ β3
y = tgx Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ .
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ· ΠΏΡΠ°Π²ΠΈΠ» Π°Π»Π³Π΅Π±ΡΡ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ.
ΠΠ°Π»Π΅Π΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π² Π·Π°Π΄Π°Π½Π½ΡΡ ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ .
ΠΡΠΏΠΎΠ»Π½ΠΈΠ² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΌΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠΎΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΎΡ ΠΌΠΈΠ½ΡΡ Π΄ΠΎ ΠΏΠ»ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌΡ: ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π±ΡΠ΄Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈΠΌΠ΅Ρ β4
Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (-1;1).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ»Ρ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ, Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ -1;1
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠΊΡΠΈΠ½ΡΡΠ° ΡΠ°Π²Π½ΡΠ΅ΡΡΡ:
ΠΡΠΈΠΌΠ΅Ρ β5
Π Π°Π·Π±Π΅ΡΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΡ 2sinx2-4, Π³Π΄Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ 3. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
, Π³Π΄Π΅ x > 3
Π€ΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π»Ρ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ.
ΠΠ°Π±Π»ΡΠ΄Π°Π΅ΠΌ Π½Π΅Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠΉ Π²ΠΈΠ΄ ΠΏΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° β 3.
ΠΡΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ . ΠΡΠΈ ΡΡΡΠ΅ΠΌΠ»Π΅Π½ΠΈΠΈ x ΠΊ β 3 Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡΡ ΠΊ β 1.
ΠΠ°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠ°Π·ΡΡΠ² Π² ΡΠΎΡΠΊΠ΅ 3. ΠΠΎΠ³Π΄Π° ΡΡΠ½ΠΊΡΠΈΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π΄Π°Π½Π½ΠΎΠΌΡ ΡΠ°Π·ΡΡΠ²Ρ Π΅Π΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΡΡ ΠΊ -1. ΠΠΈΠ½ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ Π±ΡΠ΄Π΅Ρ Π½Π°Π±Π»ΡΠ΄Π°ΡΡΡΡ ΠΏΡΠΈ ΡΡΡΠ΅ΠΌΠ»Π΅Π½ΠΈΠΈ ΠΊ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΊΠ΅, Π½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ.
ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π²ΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π·Π±ΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΡΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°. (-;β3], (β3 ;3], (3;+)(-;-3], (-3; 3], (3;+).
ΠΠ΅ΡΠ²ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° . Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ, ΠΌΠ΅Π½ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π΅Π½ 1, ΠΈΠ»ΠΈ Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π΅Π½ -1. ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ:
ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ
ΠΠ° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ -β;-3, ΡΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ [-6;-2].
Π€ΡΠ½ΠΊΡΠΈΡ y=-1, ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π½Π° ΠΏΠΎΠ»ΡΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (β3;3]. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ -1.
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ (3;-+β). Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ
. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π΅Π΅ ΡΠ±ΡΠ²Π°Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ ΠΎΡ ΠΏΠ»ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π΄ΠΎ Π½ΡΠ»Ρ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ»Ρ ΠΎΠ½Π° Π½Π΅ Π΄ΠΎΡΡΠΈΠ³Π½Π΅Ρ.
ΠΡΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ 3, ΡΠΎ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ +β.