Что значит фиксация азота
Научная электронная библиотека
Колосов А. Е., Жданова О. Б., Мартусевич А. К., Ашихмин С. П.,
1.2. Азотистый обмен в биосистемах
Фиксация азота и азотный цикл
Термин «фиксация азота» означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С. Аррениус установил, что таким способом фиксируется до 400 млн. тонн азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает около 6700 г азота. Достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом, происходит круговорот азота в природе, или азотный цикл.
Азотистый обмен почвы – это круговорот в почве азота, который присутствует там не только в виде простого вещества (газа – N2), но и в виде ионов: нитритов (), нитратов (
) и аммония (
). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние атмосферы, вымывание из почвы различных веществ (рис. 1.1).
Очень большую роль в круговороте азота играют почвенные микроорганизмы. Они способны снижать концентрации азотсодержащих веществ, губительные для других живых организмов. Они могут переводить токсичный для живых существ аммиак в менее токсичные нитраты и в биологически инертный атмосферный азот. Таким образом, микрофлора почвы способствует поддержанию стабильности её химических показателей.
Роль почвенных микроорганизмов в круговороте азота
Запасы азота в природе очень велики. Общее содержание этого элемента в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. В воздухе азот присутствует в виде газа N2. Однако газ азот (N2), содержание которого в атмосфере достигает 78 % по объёму, эукариоты сами по себе ассимилировать не могут. А уникальной способностью превращать N2 в азотсодержащие соединения обладают некоторые бактерии, которые называют азотфиксирующими, или азотфиксаторами. Фиксация азота возможна многими бактериями и цианобактериями. Они живут или в почве, или в симбиозе с растениями, или с несколькими разновидностями животных. Например, семья бобовых растений (Fabaceae) содержит такие бактерии на своих корнях. Типичным представителем свободноживущих азотфиксирующих микроорганизмов является Azotobacter – грамотрицательная бактерия, связывающая азот воздуха. Продукты фиксации азота – аммиак (NH3), нитриты.
Рис. 1.1. Общий цикл азота в биосистемах
Рис. 1.2. Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий
Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов. Этот процесс носит название нитрификации, он осуществляется нитрифицирующими бактериями. Однако нет такой бактерии, которая бы прямо превращала аммиак в нитрат. В его окислении всегда участвуют две группы бактерий: одни окисляют аммиак, образуя нитрит, а другие окисляют нитрит в нитрат. Наиболее известные виды нитрифицирующих бактерий –
это Nitrosomonas и Nitrobacter. Nitrosomonas окисляет аммиак:
Nitrobacter окисляют нитрит:
Бактерии, окисляющие аммиак, поставляют субстрат для бактерий, окисляющих нитрит. Поскольку высокие концентрации аммиака оказывают на Nitrobacter токсическое действие, Nitrosomonas, используя аммиак и образуя кислоту, тем самым улучшает и условия существования для Nitrobacter.
Нитрификаторы – грамотрицательные бактерии, принадлежащие к семейству Nitrobacteracea. Им не нужны восстановленные соединения углерода для нормального роста и размножения, они способны восстанавливать CO2 до органических соединений, используя для этого энергию окисления минеральных соединений азота – аммиака и нитритов. Таким образом, нитрификато-
ры – бактерии, которые способны питаться исключительно неорганическими соединениями и осуществляют процесс хемосинтеза, синтеза органических соединений из минеральных. Хемосинтез – путь усвоения живыми существами неорганического углерода, альтернативный фотосинтезу. Растения используют нитраты для образования разных органических веществ. Животные потребляют с пищей растительные белки, аминокислоты и др. азотсодержащие вещества. Таким образом, растения делают органический азот доступным для других организмов-консументов.
Все живые организмы поставляют азот в окружающую среду. С одной стороны, все они выделяют в ходе жизнедеятельности продукты азотистого обмена: аммиак, мочевину и мочевую кислоту. Последние два соединения разлагаются в почве с образованием аммиака (который при растворении в воде дает ионы
аммония).
Мочевая кислота, выделяемая птицами и рептилиями, также быстро минерализуется особыми группами микроорганизмов с образованием NH3 и СО2. С другой стороны, азот, включённый в состав живых существ, после их гибели подвергается аммонификации (разложение содержащих азот сложных соединений с выделением аммиака и ионов аммония()) и нитрификации.
Продукты нитрификации – и
в дальнейшем подвергаются денитрификации. Этот процесс целиком происходят благодаря деятельности денитрифицирующих бактерий, которые обладают способностью восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2). Эти газы свободно переходят в атмосферу.
В отсутствии кислорода нитрат служит конечным акцептором водорода. Способность получать энергию путем использования нитрата как конечного акцептора водорода с образованием молекулы азота широко распространена у бактерий. Временные потери азота на ограниченных участках почвы, несомненно, связаны с деятельностью денитрифицирующих бактерий. Таким образом, круговорот азота невозможен без участия почвенной микрофлоры.
Усваиваемые соединения азота могут накапливаться в почве в неорганической форме (нитрат) или могут быть включены в живой организм как органический азот. Ассимиляция и минерализация определяет поглощение соединений азота из почвы, объединение их в биомолекулы растений и конверсию в неорганический азот после отмирания растений, соответственно. Ассимиляция – переход неорганического азота (типа нитрата) в органическую форму азота как, например, аминокислоты. Нитрат переходит с помощью ферментов сначала в нитрит (редуктаза нитрата), затем в аммиак (редуктаза нитрита). Аммиак входит в состав аминокислот.
Факторы, влияющие на круговорот азота в антропогенных биоценозах
В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияют многочисленные антропогенные факторы. Во-первых, это кислотные дожди – явление, при котором наблюдается понижение pH дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 – из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:
Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:
Далее оксид азота реагирует с атмосферной водой с образованием азотной и азотистой кислот:
2NO2 + H2O = HNO3 + HNO2
В каплях атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву. Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, – это технологические выбросы. Оксиды азота – одни из самых распространенных загрязнителей воздуха. Неуклонный рост производства аммиака, серной и азотной кислоты напрямую связан с увеличением объёма отходящих газов, а, следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов – переудобрение почв нитритами, нитратами (селитрой) и органическими удобрениями. И, наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактерииями в нитраты.
Актуальность изучения круговорота азота в антропогенных биоценозах
Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние.
Антропогенные биоценозы – это особые природные сообщества, сформировавшиеся под непосредственным влиянием человека, который сам может создавать новые ландшафты и серьёзным образом изменять экологическое равновесие. Кроме того, деятельность человека оказывает огромное влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие, потому что произошли серьёзные изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате вызванных человеком воздействий. Азот является элементом, необходимым для существования животных и растений, он входит в состав белков, аминокислот, нуклеиновых кислот, хлорофилла, гемов и др. В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов.
Очень важно изучать и контролировать круговорот азота, особенно в антропогенных биоценозах, потому что небольшой сбой в какой-либо части цикла может привести к серьёзным последствиям: сильным химическим загрязнениям почв, зарастанию водоемов и загрязнению их продуктами разложения отмершей органики (аммиак, амины и др.), высокому содержанию растворимых соединений азота в питьевой воде.
Для изучения особенностей круговорота азота можно использовать комплексную методику по изучению содержания ионов нитритов (), нитратов (
) и аммония (
) в почве и её микробиологических показателях.
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Азотфиксация
Азотфиксация, или микробиологическая фиксация атмосферного азота — процесс поглощения микроорганизмами почвы азота атмосферы и трансформация его в органические и минеральные вещества.
Изучением азотфиксации занимались Ж. Буссенго, М. Бейерник, Г. Гельригель, Г. Вильфорт, М.С. Воронин, С.Н. Виноградский, В.Л. Омелянский, Д.Н. Прянишников, Д.И. Менделеев, К.А. Тимирязев.
«Немного найдется явлений, где бы так ясно определилась взаимная роль теории и практики, как в тех исследованиях, в которых научные вопросы о происхождении азота у растений неразрывно сливались с чисто практическими вопросами о пользе возделывания клевера и вообще бобовых».
Отечественная сельскохозяйственная наука уделяла большое внимание изучению явления азотфиксации: создана коллекция наиболее эффективных штаммов микроорганизмов, с конца 50-х годов ведутся генетические и генетико-селекционные исследования, которые впервые в отечественной литературе освещены в монографии «Генетика симбиотической азотфиксации с основами селекции» под редакцией И.А. Тихоновича и Н.А. Проворова в 1998 г.
Навигация
Значение азотфиксации
На долю азота в атмосферном воздухе приходится 78,09%. Над 1 гектаром суши или водной поверхности Земли содержится около 80 тыс. т азота, который недоступен большинству высших растений.
Атомы азота в молекуле N2 соединены очень прочной тройной связью N≡N, поэтому разрыв этой связи сопряжен с большими затратами энергии. В промышленности этот процесс с образованием аамиака происходит при высоких температурах и давлении, тогда как в биологических системах — при нормальном атмосферном давлении и температуре.
В зависимости от источников энергии азотфиксирующие микроорганизмы относят к: автотрофам и гетеротрофам.
По оценкам, суммарный объем азотфиксации в год в наземных экосистемах составляет 175-190 млн т азота, 90-110 млн т из которых приходятся на почвы сельскохозяйственных угодий (Мишустин, 1983). При этом ежегодный вынос азота из почвы с сельскохозяйственной продукцией составляет 110 млн т.
Интенсивность азотфиксации
Опыт, проведенный Б.А. Ягодиным совместно с Ю.Я. Мазелем и Ю.Г. Сазоновым в 1981 г. показал зависимость симбиотической азотфиксации от обеспеченности растений азотом и интенсивности фотосинтеза. В этом опыте, люпин сорта Быстрорастущий 4 выращивали при разных уровнях обеспеченности азота и 1-, 3- и 6-суточном затенении. Освещенность изменялась в 1000 раз. Затенение приводило к снижению азотфиксации, в большей степени — при высоком содержании минерального азота. После 6-суточного затенения азотфиксация в варианте без азота снизилась в 40 раз, в варианте с половинной дозой — полностью прекратилась, при двукратных дозах — азотфиксация остановилась уже после 3-суточного затенения.
Максимум интенсивности азотфиксации отмечался в фазе цветения в вариантах без азота и половинной дозой. В фазе бутонизации при половинной дозе она была больше, чем в варианте без азота. Это объясняется тем, что небольшая стартовая доза азота способствует лучшему развитию клубеньков на ранних этапах развития. В фазе цветения в варианте без азота этот показатель был выше, чем в вариантах с азотом.
В фазе бутонизации максимум азотфиксации в дневном цикле приходился на утренние часы (8 ч), причем в варианте с половинной дозой фиксация проходила быстрее, чем в варианте без азота. В фазе цветения максимум приходился на полдень. В этом случае она была наибольшей в варианте без азота. При повышенной дозе азота этот показатель уменьшался во все фазы развития.
Более интенсивное поступление продуктов, меченных 14 С, отмечалось в варианте без азота. При двойной дозе оно было на 20% меньше. Через 30 мин после экспозиции метка обнаруживалась в клубеньках обоих вариантов (0,37 и 0,07 соответственно, от общей активности). За 2,5 ч в варианте без азота в клубеньки поступило в 7 раз больше продуктов, чем в варианте с азотом, в корни — в 5 раз, в стебли — в 2 раза больше.
Неодинаковая скорость поступления продуктов фотосинтеза в корневые клубеньки при разных уровнях азотного питания повлияла на интенсивность азотфиксации. Вследствие накопления продуктов фотосинтеза в варианте с азотом затенение в течение 3 суток подавило азотфиксацию клубеньков.
Таким образом, затенение люпина приводит к снижению фиксации азота, но в варианте на фоне минерального азота это снижение больше, чем без азота.
Коэффициент азотфиксации составляет от 0,3 до 0,85.
Интенсивность азотфиксации свободноживущими бактериями зависит от запасом легкодоступных органических веществ, служащих источником энергии. Например, активность азотфиксации в прикорневой зоне растений за счет ассоциативной азотфиксации в 3-200 раз больше, чем в почвах междурядий. Поэтому растения является главным фактором деятельности диазотрофных бактерий в ризосфере благодаря корневой экссудации и корнеопада, объем которых составляет от 25 до 50% продукции фотосинтеза.
Интенсивность фиксации азота диазотрофов определяется выделительной деятельностью корневых систем растений, то есть, в конечном счете от фотосинтетической активности.
Высокая активность в ризосфере многих тропических растений связана со способность использовать при фотосинтезе путь С-4-дикарбоновых кислот. Растениям этого типа требуют интенсивного освещения, а максимальная скорость фотосинтеза у них значительно выше, чем у растений, использующих цикл Кальвина (С-3-тип). Так как растениями с С-4-типом расходуется меньшее количество углеводов на фотодыхание, их часть используется для роста корней и корневой экссудации.
Несимбиотическая азотфиксация изучалась многими исследователями, однако о ее масштабах в различных почвенно-климатических зонах информации мало, в связи с тем, что в природных условиях этот процесс зависит от ряда динамичных факторов среды.
Так, согласно ряду исследований плодородных почв рисовых полей показано, что в результате несимбиотической фиксации под рисом накапливаться 60-70 кг/га азота в год. Причем в затопляемых почвах фиксируется 57-63 кг/га азота, а в незатопляемых — 3-7 кг/га, без растений в затопленных почвах — 23-28 кг/га азота.
За 3 месяца вегетации азотфиксация в почвах рисовых полей Краснодарского края составляла 9-27 кг. Внесение соломы в почву способствует размножению различные группы азотфиксирующих бактерий и росту азотфиксации до 20-40 кг/га в месяц. Влажность также способствует усилению активности при разложении соломы и целлюлозы. В интразональных почвах избыточного увлажнения, то есть пойменных, болотных почвах и рисовых плантациях, активность наиболее высока — от 16,5 до 67,5 кг/га в месяц. В почвах тропической зоны несимбиотическая азотфиксация в среднем составляет 200 кг/га в год, достигая иногда 600 кг/га в год.
Активность несимбиотической азотфиксации зависит также: влажности, температуры, гранулометрического состава почвы, степени аэрированности корнеобитаемого слоя, содержания углекислого газа, наличия макро- и микроэлементов. Минеральные удобрения, известкование, воздушный режим также влияют на интенсивность, но, высокая эффективность отмечается, когда влажность, температура и органическое вещество не лимитируют азотфиксацию. Внесение в дерново-подзолистые почвы растительных остатков позволяет увеличить азотфиксирующую активность в 2-5 раз при условии достаточного увлажнения.
Что значит фиксация азота
Фиксация азота
Рис. 7.3. Клубеньки на корнях сои. (С любезного разрешения компании по производству нитрагина.)
Взаимовыгодная ассоциация двух организмов называется симбиозом. Так как ни Rhizobium, ни растение-хозяин в отдельности не способны фиксировать и восстанавливать атмосферный азот, биологический комплекс в клубеньке нужно рассматривать как симбиотическую ассоциацию бактерий и растения-хозяина. Каждый тип растения-хозяина имеет свой собственный симбиотический Rhizobium. Взаимное узнавание растения-хозяина и бактерий осуществляется путем прикрепления особого белка (лектина), находящегося на поверхности клеток корневого волоска, к специфической бактерии. После прикрепления к хозяину вторгающийся организм проникает в клетки необычно искривленных корневых волосков, которые, очевидно, деформируются под влиянием выделяемых бактериями ростовых гормонов группы ауксина (см. гл. 9). Внутри клетки-хозяина бактерии делятся, и образовавшееся потомство изменяет свою форму превращаясь в бактероиды, содержащиеся в инфекционной нити, которая проходит от верхушки клеточной стенки корневого волоска через центр клетки (рис. 7.4). Окончательным результатом такого проникновения бактерий является чрезвычайно сильное разрастание клеток корня, приводящее к образованию бородавчатых выпуклостей, называемых клубеньками. Ризобиум способен эффективно фиксировать азот, лишь находясь в клубеньках такого типа.
Рис. 7.4. Заражение белого клевера бактериями Rhizobium trifolii происходит через клетки корневых волосков. Обратите внимание на значительное накопление клеток ризобиума (1) на кончике корневого волоска и преломляющую свет инфекционную нить (2) внутри корневого волоска. Отдельные бактериальные клетки своими концами прикреплены к продольным сторонам клеточной стенки корневого волоска. (С любезного разрешения F. B. Dazzo, Michigan State University.)
Ассоциация между Spirillum и его растением-хозяином тоже относится к симбиотической, но она ограничена поверхностью корней. Это менее прочный тип ассоциации, так как Spirillum можно выращивать отдельно от хозяина при наличии достаточного количества питательных веществ. Поэтому ученые изучают возможность крупномасштабного культивирования этих бактерий в качестве источников фиксированного азота. Было также показано, что иногда данные бактерии живут в ассоциации с кукурузой. Это открывает возможность выведения штаммов, способных к фиксации азота на тех видах растений, которые обычно не имеют азотфиксирующих бактерий.
Такое связывание обеспечивает эффективное удаление кислорода, находящегося поблизости от нитрогеназы, и оптимальные скорости азотфиксации. Кислород, связанный с леггемоглобином, может быть также использован для образования АТР в процессе дыхания. Это имеет очень большое значение, так как для фиксации азота необходимы значительные количества АТР. Как правило, чем краснее клубенек, тем активнее в нем идут процессы азотфиксации. В азотфиксирующей сине-зеленой водоросли Nostoc нитрогеназа. очевидно, локализована в гетероцистах, специальных нефотосинтезирующих анаэробных клетках (рис. 7.5). Эта структурная организация служит также для изоляции азотфиксирующей системы от кислорода, выделяющегося в процессе фотосинтеза.
* ( В клубеньковых растениях из сем. бобовых главной формой органического азота, двигающегося вверх по ксилеме, являются замещенные производные мочевины (урейды).)
Рис. 7.6. Три способа образования аминокислот
Рис. 7.7. Круговорот азота. Азот почвы, живых существ и атмосферы находится в состоянии постоянного круговорота
Фермент нитрогеназа, который связывается с молекулой N2 (N=N) и восстанавливает ее до аммиака (NH3), может также присоединять ацетилен (HC=CH) и восстанавливать его до этилена (HC=CH). Обнаружение этой активности лежит в основе метода, с помощью которого азотфиксирующую активность растения можно определить непосредственно в поле. Определенное количество ацетилена в виде газа вносится в корнеобитаемую среду растения и через некоторое время удаляется. Количество ацетилена, превращенное в этилен, служит показателем азотфиксирующей способности корней данного растения. Поскольку как ацетилен, так и этилен являются газами, даже незначительные их количества можно анализировать методом газовой хроматографии, позволяющим без больших затрат быстро получать точные данные. Используя этот метод, физиологи растений исследовали азотфиксирующую способность растений сои в онтогенезе и изучили физиологические факторы, влияющие на эффективность процесса. Это важно для выявления путей дальнейшего повышения продуктивности растений.