Что такое vpp напряжение
Работа с осциллографом. Основные понятия о колебаниях сигнала
Определения колебаний.
Основной термин для определения процесса, который повторяется со временем, является волна. По своей природе волны бывают разными, но если мы говорим об осциллографах, то этот прибор работает с волнами (временными колебаниями) напряжения. Один период волны – наименьший промежуток времени, за который система совершает одно полное колебание. Дисплей осциллографа предназначен для графического отображения формы сигнала, а именно, для отображения напряжения по вертикальной оси и, соответственно, времени по горизонтальной оси.
Форма колебаний напряжения может нести много полезной информации о сигнале в целом. В любой момент времени пользователь с помощью горизонтальной и вертикальной осей может сделать выводы о временных изменениях напряжения. Наиболее распространенными видами колебаний можно назвать: синусоидальные, квадратные или прямоугольные, треугольные или зубчатые, ступенчатые или импульсные.
Синусоидальная форма сигнала – владеет всеми гармоническими математическими свойствами, большинство источников питания переменного тока продуцируют колебания этой формы. Одним из вариантов синусоидальных колебаний есть затухающие синусоидальные колебания, которые можно наблюдать в контурах, где происходит колебания напряжения, но амплитуда которых уменьшается со временем.
Квадратная и прямоугольная формы сигнала – такая графическая зависимость колебаний является достаточно распространенной, и актуальна в тех случаях, когда изменения напряжения (рост или спад) происходит через равные интервалы. Эта форма сигнала используется для тестирования усилителей, у хорошего усилителя изменения амплитуды имеют квадратную форму с минимальным искажением. Такая форма сигналов также широко используется в теле-, радио- и компьютерных схемах. По поводу прямоугольной формы сигнала следует отметить, что в целом она идентична к квадратной, за исключением того, что временные интервалы высоких и низких значений амплитуды есть разными.
Треугольная и зубчатая формы сигнала – продуцируют схемы, что служат для контроля линейности напряжения, такие как горизонтальная развертка аналоговых осциллографов или же растровое телевизионное сканирование. Переходы между уровнями напряжения в этих волнах меняются в постоянном диапазоне и называются пилообразными изменениями.
Ступенчатая и импульсная формы сигнала – такие формы сигналов являются или одноразовыми, или кратковременными и указывают на внезапные изменения напряжения. Набор движущихся импульсов определяется как импульсная последовательность. Цифровые компоненты в компьютере «общаются» друг с другом с помощью импульсов, также такие импульсные группы распространены в рентгеновском и коммуникационном оборудовании.
Исследование формы колебаний сигнала.
Частота и период.
Любой повторяющийся сигнал имеет частоту колебаний, которая измеряется в Герцах и равна числу полных циклов, совершённых за единицу времени, например, за одну секунду. Еще одной характеристикой колебательного процесса есть период — наименьший промежуток времени, за который система возвращается в то же состояние, в котором она находилась в первоначальный момент, выбранный произвольно. Эти две характеристики обратно пропорциональны друг к другу, то есть, если частота колебаний 5Гц, то период колебаний равный 0,2 с. Как правило, для определения этих параметров служит горизонтальная временная шкала осциллографа, и, соответственно меню интерфейса для временных характеристик. Современные цифровые осциллографы имеют ряд дополнительных возможностей по определению временных характеристик. Для примера, осциллографы RIGOL серии DS 1000, предоставляют возможность автоматического измерения следующих параметров времени (см. рис.1.): частота (Freq); период (Period); длительность нарастающего и спадающего фронтов импульса (Rise Time и Fall Time); длительность положительного и отрицательного импульсов (+Width и -Width); относительная длительность отрицательного или положительного импульсов; задержка спадающего или нарастающего фронтов канала 2 относительно канала 1.
Рис. 1.
Определение некоторых параметров времени осциллографом RIGOL серии DS 1000 на примере импульса.
Напряжение.
Напряжение является электрическим потенциалом между двумя выбранными точками в схеме. Обычно одной из этих точек есть земля (0 В). Также пользователь может измерить напряжение между максимальным и минимальным значениями напряжения, что называется размахом напряжения сигнала. Опять-таки, как показано выше для временных характеристик, цифровые осциллографы вместе с основным значением напряжения дают возможность пользователям параллельно определять дополнительные значения напряжения. Как показано на рис.2 осциллографы RIGOL серии DS1000 предоставляют возможность автоматического измерения следующих параметров напряжения: Vpp — размах напряжения сигнала; Vmax и Vmin — максимальное и минимальное значения напряжений сигнала, полученных при регистрации всей осциллограммы сигнала; Vamp — амплитуда напряжения сигнала между уровнями Vtop и Vbase; Vtop и Vbase — напряжения вершины и основания импульса, которые используются для прямоугольных импульсных сигналов; Overshoot и Preshoot— положительный выброс на вершине и отрицательный выброс у основания, которые используются для прямоугольных импульсных сигналов; Vavg и Vrms — среднее арифметическое и среднеквадратическое значения напряжения для всей осциллограммы сигнала.
Рис. 2. Определение параметров напряжения осциллографом RIGOL серии DS 1000 на примере импульса.
Фаза.
Эта характеристика, как правило, служит для описания гармонических (синусоидальных) колебаний. Один цикл таких колебаний имеет 360 градусов. Используя это, пользователь может определить угол сдвига фазы гармонического колебания, когда нужно описать величину пройденного сигналом периода. Сдвиг по фазе используют при определении временной разницы (задержки) между двумя похожими сигналами. Например, осциллографы RIGOL серии DS 1000 имеют, так называемую, функцию режима X-Y, формат которого служит для изучения соотношения фаз двух сигналов. На рис. 3 показано вид окна названого осциллографа при использовании данной функции прибора.
Рис. 3. Вид дисплея осциллографа RIGOL серии DS 1000 при использовании режима X-Y
DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4
Терминология
Ниже приведен список технических терминов, относящихся к разгону памяти с процессором Ryzen. Последний использует стандартную архитектуру памяти DDR4, поэтому вы можете быть знакомы с некоторыми из этих терминов. Некоторые другие термины являются новыми и характерными для UEFI материнских плат платформы AM4.
SOC Voltage — напряжение контроллера памяти. Предел 1,2 В.
DRAM Boot Voltage — напряжение, на котором происходит тренировка памяти при запуске системы. Лимит: до 1,45–1,50 В.
VDDP Voltage — это напряжение для транзистора, который конфигурирует содержимое оперативной памяти. Лимит: до 1,1 В.
VPP (VPPM) Voltage — напряжение, которое определяет надежность доступа к строке DRAM.
CLDO_VDDP Voltage — напряжение для DDR4 PHY на SoC. DDR4 PHY, или интерфейс физического уровня DDR4, преобразует информацию, которая поступает из контроллера памяти в формат, понятный модулям памяти DDR4.
Несколько нелогично, что снижение CLDO_VDDP часто может быть более выгодным для стабильности, чем повышение. Опытные оверклокеры также должны знать, что изменение CLDO_VDDP может сдвинуть или устранить дыры в памяти. Небольшие изменения в CLDO_VDDP могут иметь большой эффект, и для CLDO_VDDP нельзя установить значение, превышающее VDIMM –0,1 В. Tсли вы измените это напряжение, то потребуется холодная перезагрузка. Лимит: 1,05 В.
Vref Voltage — источник опорного напряжения оперативной памяти. «Настройка» взаимосвязи контроллера памяти и модуля памяти в зависимости от уровня напряжения, которое рассматривается как «0» или «1»; то есть напряжения, найденные на шине памяти ниже MEMVREF, должны рассматриваться как «0», а напряжения выше этого уровня должны считаться «1». По умолчанию этот уровень напряжения составляет половину VDDIO (около 0,500x). Некоторые материнские платы позволяют пользователю изменять это соотношение, обычно двумя способами: (1) «DRAM Ctrl Ref Voltage» (для линий управления с шины памяти; официальное название JEDEC для этого напряжения — VREFCA) и (2) «DRAM Ctrl Data Ref Voltage» (для строк данных с шины памяти; официальное название JEDEC — VREFDQ). Эти параметры настроены как множитель.
VTT DDR Voltage — напряжение, используемое для управления сопротивлением шины, чтобы достигнуть высокой скорости и поддержать целостность сигнала. Это осуществляется с помощью резистора параллельного прерывания.
PLL Voltage — определяет напряжение питания системы Фазовой АвтоПодстройки Частоты (ФАПЧ или PLL — Phase Locked Loop) и является актуальной лишь для повышения стабильности во время разгона системы с помощью BCLK. Лимит: 1,9 В.
CAD_BUS — САПР командной и адресной шины. Для тех, кто может тренировать память на высоких частотах (>=3466 МГц), но не может стабилизировать ее из-за проблем с сигнализацией. Я предлагаю вам попробовать уменьшить токи привода, связанные с «Командой и адресом» (увеличив сопротивление).
CAD_BUS Timings — задержка трансивера. Значения являются битовой маской (грубой / точной задержки). Аналог RTL/IOL в исполнении AMD. Имеют огромное влияние на тренировку памяти.
procODT — значение сопротивления, в омах, который определяет, как завершенный сигнал памяти терминируется. Более высокие значения могут помочь стабилизировать более высокие скорости передачи данных. Ограничение: нет.
RTT (время приема-передачи) — это время, затраченное на отправку сигнала, плюс время, которое требуется для подтверждения, что сигнал был получен. Это время задержки, следовательно, состоит из времени передачи сигнала между двумя точками. Настройка, которая отвечает за оптимизацию целостности сигнала. DRAM предлагает диапазон значений сопротивления нагрузки. Конкретное сопротивление приемника выводов DQ, представленное интерфейсу, выбирается комбинацией начальной конфигурации микросхемы и рабочей команды DRAM, если включено динамическое завершение на кристалле.
Geardown Mode — позволяет памяти уменьшать эффективную скорость передачи данных на шинах команд и адресов.
Power Down Mode — может незначительно экономить энергию системы за счет более высокой задержки DRAM, переводя DRAM в состояние покоя после периода бездействия.
BankGroupSwap (BGS) — настройка, которая изменяет способ назначения приложениям физических адресов в модулях памяти. Цель этого регулятора — оптимизировать выполнение запросов к памяти, учитывая архитектуру DRAM и тайминги памяти. Теория гласит, что переключение этого параметра может сместить баланс производительности в пользу игр или синтетических приложений.
Игры получают ускорение при отключенной BGS, а пропускная способность памяти AIDA64 была выше при включенной BGS.
Алгоритм настройки системы
Инструмент, который будет нам помогать с рекомендациями — DRAM Calculator for Ryzen. Самый главный, фундаментальный шаг — это запуск системы на определенной частоте, которую мы хотим получить. Для этого нам потребуется вручную установить такие настройки в UEFI: профиль XMP памяти (он может называться по-разному, смысл от этого не меняется), частоту для оперативной памяти (которую мы хотим получить), установить частоту BCLK (если присутствует такая настройка в прошивке), тайминги (которые рекомендует калькулятор), напряжение для SOC и DRAM (рекомендации калькулятора) и procODT + RTT (NOM, WR и PARK). Не забывайте про важный нюанс, что материнская плата или оперативная память может не справиться с вашими амбициями, потому советую посетить страницу поддержки вашей материнской платы и посмотреть QVL-список, в котором будут указаны частоты, на которых плата в заводских условиях функционировала без ошибок. Эта частота и будет нашей отправной точкой. Зачастую это 3000–3200 МГц.
Параметры procODT + RTT (NOM, WR и PARK) мы будем подбирать так, чтоб система имела минимальное кол-во ошибок. Тестовый пакет TM5 0.12 (Basic Preset). Безусловно, от всех ошибок мы не сможем избавиться, и для этого нам нужен будет следующий шаг.
Цель следующего шага — поиск самого оптимального напряжения для DRAM и SOC, при которых система будет иметь минимальное кол-во ошибок. Сначала подбираем напряжение для SOC, а затем для DRAM (калькулятор вам подскажет диапазон). Для отлова ошибок используем тестовый пакет TM5 0.12 (Basic Preset).
В половине случаев вы можете на данном этапе получить полностью стабильную систему. Если тестовый пакет TM5 0.12 не находит ошибок, то вы должны увеличить спектр тестовых программ для проверки стабильности. Вы можете использовать LinX, HCI, Karhu, MEMbench и другие программы. В случае если вышеописанные утилиты нашли ошибку, то вам стоит перейти к следующему шагу, отладочному.
На отладочном шаге главная цель — это изменение определенных таймингов, указанные на иллюстрации ниже.
На данном этапе вы должны проверить по очереди влияние каждого тайминга на стабильность системы. Примечание: я не рекомендую изменять все задержки сразу, постарайтесь набраться терпения. Если тестируемый тайминг никак не улучшает ситуацию, мы его возвращаем на место и проверяем по списку следующую задержку.
На этом шаге основной инструктаж по отладке системы для простых пользователей заканчивается. Дальнейшие шаги я могу посоветовать более опытным оверклокерам, которые знакомы с разгоном достаточно давно.
Тонкая настройка CAD_BUS
и корректировка дополнительных напряжений.
На каждой иллюстрации присутствуют списки параметров, которые мы используем или изменяем. Эти списки я сформировал так, чтобы более приоритетные настройки, которые могут помочь улучшить стабильность, вы проверили первыми. Безусловно, вы можете пойти своей дорогой, четких правил и закономерностей нет.
Что такое vpp напряжение
_________________
Я рожден при социализме, и я этим горжусь!
Ser60 | ||||
Карма: 73 |
| |||
Соник | ||||
Карма: 46 |
| |||
Ser60 | ||||
Карма: 73 |
| |||
Соник | ||||
Карма: 46 |
| |||
Ser60 | ||||
Карма: 73 | ||||
Соник | ||||
Карма: 46 |
| |||
Ser60 | ||||
Карма: 73 | ||||
Соник | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Карма: 46 |
|