Что такое vor в авиации
Что такое vor в авиации
Радиомаяк VOR, совмещенный с дальномером DME
Всенаправленный радиомаяк (англ. Very high frequency Omni directional radio Range сокр. VOR). Обеспечивает выдачу информации об азимуте ЛА. Радиомаяк может работать как самостоятельно, так и в составе с дальномером DME, образуя азимутально-дальномерную систему ближней навигации VOR/DME.
Радиомаяк VOR излучает на одной из 160 несущих частот (в диапазоне от 108 до 117.975МГц с шагом 50КГц) сигналы опорной и переменной фаз частотой 30Гц.
Амплитудно-частотно-модулированный сигнал опорной фазы, содержащий частотно-модулированную поднесущую (9960Гц с девиацией плюс-минус 480Гц) излучается неподвижной всенаправленной антенной. Амплитудно-модулированный частотой 30Гц сигнал переменной фазы излучается вращающейся (30 об/с) направленной антенной с диаграммой направленности в виде «восьмёрки».
Складывающиеся в пространстве диаграммы направленности образуют переменное по амплитуде поле, изменяющееся с частотой 30Гц. Радиомаяк VOR ориентирован так, что фазы опорного и переменного сигналов совпадают в направлении магнитного северного меридиана. В момент, когда максимум диаграммы направленности вращающегося поля направлен туда, частота сигнала поднесущей имеет максимальное значение(1020Гц). В остальных направлениях фазовый сдвиг меняется от ноля до 360 градусов. Упрощённо можно представить VOR как радиомаяк, излучающий в каждом направлении свой индивидуальный сигнал. Количество таких «сигналов-азимутов» определяется только чувствительностью бортового оборудования к величине сдвига фаз, прямо пропорционального текущему азимуту ЛА относительно радиомаяка. В этом контексте, вместо понятия «азимут» употребляется термин радиал (VOR Radials). Принято считать что количество радиалов равно 360. Номер радиала совпадает с числовым значением магнитного азимута.
Бортовой индикатор VOR, помимо указания азимута, позволяет вести ЛА в режимах «от» и «на» радиомаяк по заданному азимуту. Для этого на индикаторе VOR имеются соответствующие планки, показывающие отклонение ЛА от ЛЗП. Соответственно ЛЗП должна проходить непосредственно через сам маяк.
Для опознавания маяков VOR несущая частота манипулируется с помощью азбуки Морзе сигналом частоты 1020Гц. Кроме того, позывные сигналы могут передаваться голосом с помощью магнитной записи.
Маяки VOR выпускаются в двух вариантах:
ПРОЕКТ «ЧЕЛОВЕК. ЗЕМЛЯ. ВСЕЛЕННАЯ»
Инструменты пользователя
Инструменты сайта
Боковая панель
Содержание
VOR навигация
Основным навигационным средством в большинстве стран является VOR (VHF Omnidirectional Range navigation system), что в переводе на русский называет всенаправленный курсовой радиомаяк УКВ диапазона. Появившиеся в последнее время спутниковые навигационные системы не заменяют VOR, а дополняют их.
Самолеты летают по воздушным трассам, которые строятся из отрезков. Отрезки образуют сеть, опутывающую целые государства. В узлах этой сети (на концах отрезков) расположены VOR-радиостанции.
Радиомаяк VOR состоит из двух передатчиков на частотах 108,00-117,95 МГц. Первый передатчик VOR передает постоянный сигнал во все стороны, в то время как второй передатчик VOR представляет собой узконаправленный вращающийся луч, изменяющийся по фазе в зависимости от угла поворота, то есть луч пробегает круг в 360 градусов (как луч маяка). В результате получается диаграмма излучения в виде 360 лучей (один луч через каждый градус окружности). Принимающая аппаратура сравнивает оба сигнала и определяет «угол луча», на котором в данный момент находится самолет. Такой угол называется VOR-радиалом (VOR Radial).
VOR-оборудование на борту самолета может определить, на каком из VOR-радиалов известной радиостанции находится самолет.
На пилотажной карте вы можете найти необходимую VOR-станцию. На схеме выше показан самолет, находящийся на радиале 30 от VOR. Каждый VOR имеет свое название (VOR на рисунке называется KEMPTEN VOR) и сокращенное трехбуквенное обозначение (VOR на рисунке обозначается KPT). Рядом с VOR написана его частота, которую надо вводить в приемник. Таким образом, чтобы поймать сигнал от KEMPTEN VOR, надо ввести в приемник частоту 109.60.
Очень часто самолеты оборудуются не одним, а сразу двумя приемниками VOR. В таком случае один приемник называется NAV 1, а второй соответственно NAV 2. Для ввода частоты в приемник VOR используется двойная круглая ручка. Большая ее часть используется для ввода целых, меньшая — дробных долей частоты VOR. Ниже показана типичная панель управления радионавигационными приборами.
Задатчики частот VOR подписаны красным цветом. Это простейший вид приемников, который позволяет ввести только одну частоту VOR. Более сложные системы позволяют ввести сразу две частоты VOR, и быстро переключаться между ними. Одна частота VOR является неактивной (STAND BY), ее изменяет ручка задатчика частоты. Вторая частота VOR называется активной (ACTIVE), это та частота VOR, на которую настроен приемник в данный момент.
На рисунке выше показан пример приемника с двумя задатчиками частоты VOR. Пользоваться им очень просто: при помощи круглого задатчика надо ввести требуемую частоту VOR, а затем сделать ее активной при помощи переключателя. При наведении мыши на колесико задатчика курсор мыши меняет форму. Если он выглядит как маленькая стрелка, то при нажатии на мышь сменятся десятые доли. Если стрелка большая, то изменяться будет целая часть числа.
В кабине так же должен быть прибор, показывающий, на каком радиале VOR в данный момент находится самолет. Этот прибор обычно называется NAV 1, или VOR 1. Как мы уже выяснили, в самолете может иметься второй такой прибор. В самолете Cessna 172 их два:
Горизонтальная планка и транспарант GS используются при посадке по системе ILS.
Ручка OBS вращает подвижную шкалу и настраивает тем самым приемник VOR на требуемый радиал. Например, так может выглядеть прибор, настроенный на радиал 30:
На рисунке видно, что при вращении ручки OBS шкала поворачивается, и верхний уголок показывает на номер текущего радиала. Как и на компасе, все номера на приборе пишутся деленные на 10, таким образом цифра 3 обозначает радиал 30.
Вертикальная планка показывает отклонение от радиала. Если самолет находится на радиале, то планка будет стоять вертикально:
Если самолет сместится правее радиала, то вертикальная планка отклонится влево, чтобы показать что к радиалу надо лететь в левую сторону.
Когда пилот видит такую картину, он знает что для выхода на радиал надо повернуть влево. Правило очень простое: планка показывается в той стороне, в которую надо лететь.
Аналогичная картина будет в случае если самолет окажется левее нужного радиала:
Обратите внимание, что в данном случае самолет отклонился от радиала сильнее, и планка прибора соответственно так же отклонилась сильнее.
Важной особенностью VOR является то, что прибор всегда показывает радиал, на котором находится самолет, независимо от курса, которым идет самолет. Например, на рисунке ниже показаны самолеты, летящие разными курсами. Поскольку они находятся на одном и том же радиале и у них одинаково настроен OBS, прибор VOR у всех самолетов покажет одно и то же.
При полетах по VOR нужно помнить, что чувствительность прибора VOR возрастает при подлете к радиомаяку VOR, пока не пропадает в непосредственной близости от маяка. Около маяка VOR не надо гоняться за планкой, вместо этого, когда чувствительность становится чрезмерной, надо продолжать двигаться прежним курсом пока самолет не пройдет над маяком VOR.
Итак, чтобы лететь по радиалу VOR надо настроить на приемнике его частоту VOR, задать при помощи OBS номер требуемого радиала и удерживать вертикальную планку по центру прибора. Если планка отклоняется влево, надо довернуть налево. Если вправо, надо повернуть направо. В случае бокового ветра, нужно довернуть на ветер, чтобы компенсировать снос самолета. Более подробно про полет в ветер можно прочитать в статье про NDB навигацию.
VOR навигация в обратном направлении
Мы рассмотрели полет по направлению к VOR. Точно также можно летать и в обратном направлении.
Обратите внимание, что уголок направления показывает теперь на надпись FR, что означает что самолет движется по направлению от VOR. Самолет на рисунке немножко отклонился вправо, поэтому планка на приборе показывает что радиал находится левее.
Запомнить, как правильно задавать радиал, очень просто: номер радиала — это курс, которым должен лететь самолет, двигаясь по радиалу в безветренную погоду. При этом не важно, летит самолет от VOR или по направлению к нему, всегда вводите в OBS тот курс, которым хотите двигаться. Номера радиалов VOR соответствуют истинному курсу, а не магнитному.
Определение текущего радиала VOR
Иногда бывает нужно определить, на каком радиале в данный момент находится самолет. Для этого надо вращать задатчик OBS до тех пор, пока на приборе стрелка направления не укажет на TO, а планка отклонения не станет строго вертикально. Отложив на карте полученный номер VOR-радиала, можно прикинуть свое местоположения. Правда, это метод не покажет расстояние до VOR.
Перехват определённого радиала VOR
Частая навигационная задача — перехват определенного радиала. Например, нам нужно выйти на воздушную трассу, которая проходит по 30-му радиалу VOR. Мы знаем что находимся где-то левее радиала (а если не знаем, то можем это определить так, как было описано выше):
Первое, что нам надо сделать — это настроиться на частоту VOR и ввести при помощи задатчика OBS требуемый радиал. Прибор покажет примерно следующее:
Из этого видно, что радиал где-то далеко справа. Теперь надо решить, под каким углом мы будем перехватывать радиал. Самое быстрый способ перехватить радиал — лететь перпендикулярно ему, но это не приблизит нас к конечной точке маршрута. Выбираем разумный компромисс, и двинемся под углом 40 градусов к радиалу. Так как радиал находится справа, чтобы получить курс перехвата, добавим к курсу радиала (30 градусов) угол перехвата (40 градусов), и получим курс перехвата (70 градусов). Если бы радиал находился слева, угол перехвата надо было бы отнимать.
Довернем на полученный курс перехвата (70 градусов), и начнем путь к радиалу:
Красной пунктирной линией показан курс перехвата. Лететь этим курсом надо до тех пор, пока прибор не покажет что самолет находится на радиале:
Все что осталось, это развернуться и полететь по радиалу курсом 30 градусов. Чтобы не перелететь мимо радиала, надо начинать разворот заранее, не дожидаясь пока планка встанет строго вертикально.
Переход с одного радиала на другой
Иногда возникают ситуации, когда нужно перейти с одного радиала на другой. Такое может потребоваться при переходе с одной воздушной трассы на другую. Рассмотрим следующий пример, изображенный на схеме:
Предположим что самолету надо пролететь по радиалу 30 от VOR 1 до точки FIX, после чего необходимо повернуть курсом 90 градусом и двигаться к VOR 2. Эта задача легко решается при помощи использования двух приемников VOR одновременно. В приемник NAV1 введем частоту VOR 1 и настроем его на радиал 30, в приемник NAV2 — частоту VOR 2 и радиал 90 градусов:
Верхний приемник, настроенный на VOR 1 показывает что самолет находится точно на радиале 30 градусов и летит курсом к нему. Нижний, настроенный на VOR 2, говорит что до радиала 90 градусов еще далеко. Продолжаем движение по радиалу пока второй приемник не покажет, что мы подходим к радиалу 90 градусов:
Не дожидаясь пока стрелка VOR 2 встанет строго вертикально, заранее начнем разворот на 90 градусов. После разворота останется только продолжить движение по радиалу 90 градусов по направлению к VOR 2:
Приемник NAV1 больше не нужен, и его лучше настроить на какую-нибудь несуществующую частоту, чтобы случайно не перепутать с NAV2, который используется в данный момент.
Рекомендуется начать практиковаться на симуляторе VOR, расположенному по адресу: http://www.luizmonteiro.com/Learning_VOR_Sim.htm. Попробуйте настроиться на какой-нибудь радиал и «пролететь» по нему на самолете, обращая внимания куда будет отклоняться стрелка при отдалении от радиала в ту или иную сторону.
Ограничения VOR-навигации
Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС
Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудование, принимающее сигналы этого радиомаяка.
Система работает в УКВ диапазоне на частотах от 108,0 до 117,95 МГц, что соответствует длине волны около 3 м. В принципе частоты радиомаяков всегда кратны 0,05 МГц (50 кГц), например, 108,05 Мгц, 110,80 МГц, 112,65 МГц и т.д. Во многих регионах мира для радиомаяков используют только те частоты, которые кратны одной десятой мегагерца и тогда, вместо, например, 110,80 указывают 110,8 МГц.
Часть указанного диапазона (а именно от 108 до 111,95 МГц) занимает одновременно и другая навигационная система – радиомаячная система посадки ILS (Instrument Landing System), но у неё первая цифра частоты после запятой всегда нечетная (например, 108,35 МГц). Соответственно, у VOR, работающих в этой же части диапазона (а это аэродромные радиомаяки), такая цифра четная, например, 110,80 Мгц. В оставшейся части диапазона (свыше 112 МГц) работают трассовые радиомаяки VOR и частоты могут быть любые, но также с дискретностью 50 кГц.
На одной и той же несущей частоте радиомаяк излучает два вида сигналов по двум диаграммам направленности: опорный (reference) сигнал и переменный (variable) сигнал. Опорный сигнал промодулирован по частоте огибающей синусоидой с частотой 30 Гц и имеет круговую диаграмму направленности, то есть излучается одинаково во все стороны. В любой точке пространства фаза огибающей опорного сигнала одинакова (рис. 5.1).
У переменного сигнала диаграмма излучения направленная и имеет форму «восьмерки». Если бы ориентация этой «восьмерки» была постоянной, то в любой точке пространства амплитуда принимаемого сигнала была бы постоянной и зависела бы от угла между направлением оси «восьмерки» (здесь будет максимальная амплитуда) и направлением на данную точку.
Но эта диаграмма вращается вокруг вертикальной оси со скоростью 30 оборотов в секунду (в современных VOR вращение создается электронным путем при неподвижной антенне). А 30 оборотов в секунду это и есть 30 Гц. В результате получается, что в любой точке пространства амплитуда принимаемого сигнала меняется с частотой 30 Гц, то есть сигнал оказывается амплитудно промодулированным этой частотой. При этом фаза огибающей будет различной по разным направлениям от радиомаяка. Ведь из-за вращения диаграммы максимум амплитуды сначала пройдет через одно направление, потом через другое…
В направлении на север, где пеленг равен нулю, фазы огибающих опорного и переменного сигналов совпадают. По любому другому направлению эти два сигнала оказываются сдвинутыми по фазе как раз на такую величину, которая равна углу между северным направлением меридиана и данным направлением. А ведь это и есть пеленг этого направления Пс.
Рис. 5.1. Диаграммы направленности VOR
Разумеется, в любой точке пространства оба сигнала (опорный и переменный) складываются, но бортовое оборудование позволяет их разделить – ведь в одном из них использована частотная модуляция, а в другом – амплитудная. Эти две выделенные огибающие сдвинуты по фазе друг относительно друга. Данный сдвиг, выявленный бортовым оборудованием и выраженный в градусах, и является пеленгом данной точки от радиомаяка.
Из изложенного должно быть понятно, что с помощью VOR измеряется пеленг ВС относительно меридиана, проходящего через радиомаяк.
Обозначение VOR на картах. Символы, обозначающие радиомаяк VOR, различаются на картах, выпускаемых разными фирмами, а также на разных видах карт одной и той же фирмы. Наиболее часто используется небольшой символ азимутального круга – кружек с градусными делениями. Иногда он имеет небольшую стрелку в виде флажка, направленного на север. В последнее время компания Джеппесен обозначает VOR в виде шестиугольника или шестиугольника вместе с азимутальным кругом (рис.5.2).
Рис.5.2. Символы радиомаяка VOR на современных маршрутных картах компании Джеппесен
Если в том же месте, что и VOR, установлен и радиомаяк другой навигационной системы (дальномерный маяк DME или угломерно- дальномерный маяк TACAN – о них речь будет идти в последующих главах), то к шестиугольнику добавляется символ этого маяка, например, квадрат в случае DME (рис. 5.3).
Рис.5.3. Символы VOR, совмещенного с другим средством
Ввиду многообразия символов VOR опознавать их на карте лучше не по виду символа, а по информации в «боксе», который нанесен рядом с каждым радионавигационным средством. Убедиться, что в данном месте находится именно VOR, а не какое-то другое средство, можно по следующим признакам:
– частота лежит в пределах от 108 до 118 МГц (единицы измерения частоты в боксе не указываются, но это не вызывает недоразумений, поскольку в таком диапазоне в килогерцах ни одна навигационная система не работает);
– частота всегда указана с дробной частью, даже если значение круглое (например, 112,3; 116,0);
– позывной состоит из трех букв.
Так, на рис. 5.4(а) VOR с наименованием ALTAY обозначен шестиугольником и азимутальным кругом. Шестиугольник заштрихован, поскольку эта точка является пунктом обязательного донесения. Частота 114,3 МГц, позывной TAI (позывной также повторен символами азбуки Морзе). Координаты радиомаяка 47º44,8′ северной широты, 88º 05,0′ восточной долготы. Звездочка возле частоты указывает, что радиомаяк работает не круглосуточно. В этом же месте установлен дальномерный радиомаяк DME. Об этом свидетельствует маленькая буква D возле частоты, а также символ в виде квадрата (он охватывает шестиугольник).
На рис. 5.4(б) VOR изображен в виде азимутального круга с флажком. Наличие DME указывает буква D возле частоты. Здесь же указана буква Н в скобках, которая обозначает класс VOR (H – High, радиомаяк для использования в верхнем воздушном пространстве).
Рис. 5.4. Информация о VOR на маршрутных картах
На рис. 5.4(в) радиомаяк VOR обозначен просто небольшим кружком внутри черного треугольника (сам треугольник обозначает пункт обязательного донесения). Но внутри бокса также указана вся необходимая информация.
VOR является одним из самых давно используемых навигационных средств. За годы эксплуатации конструкция маяков неоднократно совершенствовалась, они выпускаются разными фирмами, поэтому выглядеть могут совершенно по-разному (рис.5.5-5.8). Выпускается такое оборудование и в России. В документах аэронавигационной информации они также обозначаются как VOR, хотя официально имеют другие названия, присвоенные их производителями (например, «радиомаяк азимутальный»).
Рис. 5.5.. Радиомаяк азимутальный РМА-90 (Россия)
Рис. 5.6. Радиомаяк азимутальный доплеровский DVOR-2000 (Россия)
Рис. 5.7. VOR, совмещенный с DME
Рис.5.8. Доплеровский VOR, совмещенный с TACAN
За рубежом маяки классифицируются в зависимости от объема воздушного пространства, в котором предполагается их применение. Поскольку маяки работают в УКВ диапазоне, то в принципе максимальная дальность их действия определяется дальностью прямой видимости (см. параграф 2.6) и зависит от высоты полета. Но если радиомаяк будет использоваться лишь в ограниченном районе (например, в районе аэродрома), то он может работать на пониженной мощности, что, естественно, повлияет на дальность уверенного приема сигнала.
Радиомаяки класса T (Terminal, что в данном случае можно перевести как «аэродромные») предназначены для навигации в районе аэродрома и должны обеспечивать получение навигационной информации на высотах от не менее 300 до примерно 4000 м на удалении не менее 25 морских миль (это примерно 46 км).
Радиомаяки класса L (Low Altitude, малых высот) должны обеспечивать прием сигнала от них на высотах от не менее 300 м до 18 000 футов (около 5500 м) на удалении до 40 морских миль (74 км).
Радиомаяки класса H (High Altitude, больших высот) должны обеспечивать прием сигнала (рис. 5.9):
– на высотах от 300 м до 14500 футов (примерно 4400 м) до удаления 40 морских миль (74 км);
– на высотах от 14 500 футов до 60 000 футов (около 18 300 м) – на удалении до 100 морских миль (185км);
– на высотах от 18 000 футов до 45 000 футов (около 13700 метров) до удаления 130 морских миль (240 км).
Рис. 5.9. Объем воздушного пространства, в котором радиомаяк VOR должен обеспечивать получение информации
Указанные значения задают так называемый «рабочий объем воздушного пространства» (service volume), в котором гарантируется уверенный прием сигналов именно того радиомаяка, на который настроился пилот. Может вызвать недоумение тот факт, что в соответствии с приведенными выше цифрами и рис. 5.9, дальность на высотах выше 45000 фт меньше, чем ниже этой высоты (100 морских миль вместо 130). Ведь, казалось бы, чем больше высота, тем больше должна быть дальность.
Но указанные дальности, это вовсе не максимальные дальности на которых возможен прием сигнала. Как правило, сигнал можно принимать и на больших удалениях. Эти дальности кроме обеспечения приема сигнала еще и гарантируют, что находясь в их пределах, ВС не попадет в зону действия другого радиомаяка, работающего на такой же или близкой частоте. Именно потому, что с высотой реальная дальность действия возрастает, на больших высотах (выше 45000 фт) может оказаться, что ВС оказалось в зоне действия двух радиомаяков. И если их частоты близки, то на какой из них окажется настроенным бортовое оборудование – неизвестно. Поэтому установленная дальность 100 миль (для больших высот) просто гарантирует, что на меньших удалениях такого не произойдет.
Радиомаяки непрерывно совершенствуются. PVOR (Precision VOR) является дальнейшим развитием системы. Он имеет диаграмму направленности в виде нескольких лепестков. Для устранения вызванной этим неоднозначности используются два канала измерения пеленга – грубый и точный. PVOR обеспечивает более точное измерение пеленга и менее подверженное помехам.
DVOR (Doppler VOR – доплеровские VOR) являются более точными, но и более сложными. В таких радиомаяках опорный сигнал имеет амплитудную модуляцию, а переменный сигнал – частотную, то есть как раз наоборот по сравнению с обычными радиомаяками. Это способствует уменьшению помех, например, от местных предметов вблизи радиомаяка.
Эффект вращения диаграммы направленности создается электронным путем многочисленными неподвижными антеннами, расположенными по окружности диаметром 13,4 м (см. рис. 5.6). При таком диаметре и вращении со скоростью 30 оборотов в секунду линейная скорость вращения диаграммы (1264 м/с) превышает скорость звука. Из-за этой линейной скорости для наблюдателя, находящегося в стороне от радиомаяка, получается доплеровский сдвиг частоты. Напомним, что эффект Доплера заключается в том, что при приближении источника излучения к наблюдателю воспринимаемая частота больше фактически излучаемой. При удалении – наоборот.
Антенна, излучающая опорный сигнал, несколько смещена от центра вращения диаграммы переменного сигнала. Именно ее расположение является точкой начала отсчета пеленга. Из-за смещения антенны переменного сигнала его доплеровский сдвиг будет зависеть от направления излучения, отсчитываемого от антенны опорного сигала. Принимая на борту оба сигнала можно более точно измерить пеленг.
Несмотря на разнообразие видов радиомаяков, бортовое оборудование может работать с любым из них. Пилот может и не знать, с маяком какого вида он сейчас работает.
Разработаны и еще более совершенные PDVOR (Precision Doppler VOR), но для работы с ними уже должны использоваться другие приемники.
Навигационный параметр, измеряемый VOR. Как следует из описанного выше принципа работы данной навигационной системы бортовое оборудование путем измерения разности фаз опорного и переменного сигналов определяет пеленг самолета относительно меридиана, проходящего через радиомаяк. Какого именно меридиана? В подавляющем большинстве случаев радиомаяки ориентируются так, что нулевое значение пеленга совпадает с северным направлением магнитного меридиана радиомаяка. Поэтому с помощью VOR непосредственно измеряется магнитный пеленг самолета (МПС) относительно меридиана радиомаяка. Так мы далее и будем считать в данном учебном пособии.
На самом деле в полярных районах (например, на севере Канады) радиомаяки ориентируют по истинному меридиану, поскольку магнитное склонение там велико и достаточно быстро меняется. В таких случаях об этом обязательно указывается на полетной карте. Так, на рис. 5.10 указано «VOR/DME Oriented True North» (VOR/DME ориентирован на истинный север). Соответственно и заданный путевой угол от этого радиомаяка указан истинный, что обозначено буквой T (указано 214ºT).
5.10. VOR в полярном районе
Рис. 5.11. Радиалы (пеленги)
Важно помнить, что радиал – это всегда направление ОТ радиомаяка. Использовать этот термин применительно к направлению НА маяк (то есть к МПР) нельзя.
Таким образом, можно сказать, что с помощью VOR непосредственно измеряется текущее значение радиала ВС.
Некоторое различие между радиалом и ЗМПУ все же имеется (точнее – может иметься). Действительно, VOR ориентируют по магнитному меридиану пункта, в котором он расположен (например, ППМ) и тогда радиал и ЗМПУ совпадают. Но ведь магнитное склонение со временем меняется, хотя и медленно. Северное направление магнитного меридиана через пару-тройку лет станет другим, а радиомаяк останется ориентированным как и прежде. Поэтому для выдерживания ЛЗП по- прежнему необходимо выдерживать все тот же опубликованный когда-то на карте радиал. Но он уже не будет совпадать с ЗМПУ. Ведь ЗМПУ, так же как и измеряемый компасом магнитный курс, отсчитываются от фактического направления магнитного меридиана (вектора напряженности магнитного поля Земли), которое уже изменилось.
Для каждого радиомаяка VOR публикуется значение угла между северным направлением истинного меридиана и направлением нулевого радиала. По-английски эта величина называется Declination. На русском языке она общепринятого названия пока не имеет, но иногда называется «склонением станции». Теоретически она должна совпадать с магнитным склонением, но по описанным выше причинам может со временем от него и отличаться.
По правилам, принятым в США, если Declination отличается от магнитного склонения более, чем на 2º, то радиомаяк необходимо заново выставить по магнитному меридиану. Но на практике, видимо, из-за финансовых соображений, это не всегда делается и иногда эта разница достигает 4-5º.
На современных ВС для каждого радиомаяка величина declination хранится в бортовых базах аэронавигационных данных и учитывается при автоматизированной навигации.
Автоматизированное выполнение полета по ЛЗП. На всех ВС, имеющих бортовое оборудование для работы с радиомаяками VOR, имеется возможность автоматизировать определение уклонения от ЛЗП при полете на или от радиомаяка. Это означает, что пилоту нет необходимости каждый раз отсчитывать с индикатора показания пеленга, чтобы сравнить их с заданным путевым углом. Прибор сам покажет сторону и величину уклонения.
На ВС зарубежного производства соответствующий режим работы оборудования обозначается OBS (Omni bearing selector). Используется специальный индикатор CDI (Course Deviation Indicator –индикатор отклонения от заданного путевого угла) (рис. 5.15).
Рис. 5.15. Course deviation indicator
С помощью кремальеры “OBS” пилот вращает шкалу CDI и устанавливает напротив треугольного индекса значение ЗМПУ линии заданного пути, проходящей через радиомаяк. Бортовое оборудование само определяет, выполняется полет на радиомаяк или от него, сравнивая направление на самолет с установленным путевым углом.
Если измеренный текущий радиал ВС (направление на ВС от радиомаяка) направлен примерно в ту же сторону, что и установленный ЗМПУ (находится от него в секторе ±90°), то предполагается, что полет выполняется от маяка и загорается надпись “FR” (from – от). В противном случае, когда направление на самолет противоположно установленному ЗМПУ (то есть лежит в секторе ±90° от ЗМПУ±180°), то загорается надпись “TO” (на) (рис. 5.16).
Рис. 5.16. Формирование сигналов “FROM” или “TO”
Следует подчеркнуть, что бортовое оборудование не может определить, в какую сторону на самом деле летит самолет. Оно только определяет, в каком направлении находится самолет: в том же, что и установленный путевой угол, или в противоположном. Например, если установлено значение ЗМПУ=50°, а направление на самолет (радиал) 60°, то гореть будет надпись «от» независимо от того, летит ВС от радиомаяка или развернулось и летит уже на маяк.
Для определения величины уклонения фактическое значение радиала сравнивается с тем его значением, при котором ВС находилось бы на ЛЗП (при полете от маяка этот радиал равен установленному ЗМПУ, а при полете на маяк ЗМПУ±180°). Напряжение, пропорциональное разности заданного и фактического радиалов поступает на CDI и вызывает отклонение вертикальной планки от центра прибора вправо или влево (рис. 5.17 и 5.18).
Рис. 5.17. Полет от радиомаяка
Рис. 5.18. Полет на радиомаяк
Показания этого индикатора можно интерпретировать следующим образом. Кружок в центре прибора – это ВС. Вертикальная планка – это ЛЗП. Если планка находится в левой части прибора (как на рис. 5.17), то ЛЗП находится слева от самолета, следовательно, самолет уклонился вправо от ЛЗП. Пилот должен уменьшить курс, довернув влево, и по мере приближения к ЛЗП планка будет приближаться к центру прибора. Таким образом, для следования по ЛЗП необходимо стремиться выдерживать вертикальную планку в центре.
На многих ВС отечественного производства для работы с радиомаяками VOR используется бортовое оборудование КУРС-МП (например, КУРС-МП-2, КУРС-МП-70). Оно имеет двоякое назначение. При заходе на посадку оно работает с радиомаячными системами посадки (ILS, СП). Применение его для этих целей будет рассмотрено в другой части данного учебного пособия. Но это же оборудование может быть использовано для выполнения полета на или от радиомаяка VOR. Принцип его работы в этом случае аналогичен рассмотренному режиму OBS, но с некоторыми особенностями.
ЗМПУ устанавливается на отдельном пульте, называемом «Селектор курса» (рис. 5.19). Это название, присвоенное разработчиками оборудования, является неправильным, поскольку на селекторе с помощью кремальеры устанавливается не курс, а путевой угол (course). Переключатель в центре этого пульта должен обычно находиться в нижнем положении. В этом случае загораются табло «от» или «на» в зависимости от соотношения установленного ЗМПУ и текущего радиала, аналогично тому, как в режиме OBS на зарубежных ВС. Но здесь имеется и дополнительная возможность.
Рис. 5.19. Селектор курса в оборудовании Курс-МП
Допустим ВС выполняло полет от радиомаяка и вертикальная планка правильно показывала сторону уклонения от ЛЗП (вправо или влево). Если ВС развернется в обратную сторону и будет выполнять полет на радиомаяк, для него «право» и «лево» поменяются местами, то есть, если самолет находился справа, то после разворота в обратную сторону он будет слева. Но бортовое оборудование КУРС-МП не знает, в какую сторону на самом деле летит ВС и по-прежнему будет считать, что выполняется полет от радиомаяка. Поэтому планка будет показывать сторону уклонения как и раньше, то есть ровно наоборот по сравнению с фактическим уклонением. Но абсолютная угловая величина уклонения будет индицироваться правильно. Для правильной индикации стороны уклонения следовало бы изменить установленный ЗМПУ на 180°. Но в КУРС-МП можно в такой ситуации поступить проще – поставить переключатель в верхнее положение. При этом загорится табло «на» и индикация станет правильной.
При использовании CDI, да и вообше VOR и других РНС, необходимо учитывать, от какого именно меридиана отсчитывается ЗПУ, а от какого – пеленг.
Предположим пилот хочет выполнить полет с использованием CDI от пункта САНУЛ на VOR КОТЛАС (рис.5.20).
Рис. 5.20. Определение ЗМПУ для установки на OBS
Для этого на OBS необходимо установить ЗМПУ. Первое, что приходит в голову – установить ЗМПУ=62, поскольку именно это значение указано в начале участка маршрута. Но это неверно, поскольку данное значение ЗМПУ указано от меридиана, проходящего через САНУЛ. А для правильной работы системы необходимо, чтобы ЗМПУ отсчитывался от того же меридиана, от которого измеряется пеленг, то есть от магнитного меридиана Котласа.
Если после пролета Котласа необходимо лететь и дальше на восток по той же трассе Р30, то необходимо просто установить ЗМПУ=38, указанный на карте. Ведь это и есть путевой угол от меридиана ППМ Котлас, где и установлен радиомаяк. После пролета радиомаяка загорится надпись «ОТ».
Если не учитывать от какого меридиана что отсчитывается, то трудно обеспечить точную навигацию. Иногда приходится слышать от пилотов, что, мол, при полете от VOR лечу точно по ЛЗП, а когда настраиваюсь на VOR, расположенный впереди, получается, что самолет якобы уклонился. При этом пилоты грешат на погрешности наземного оборудования. Мол, радиомаяк неправильно установлен. Что ж, иногда бывает и так. Но чаще причина в том, что пилот использовал значение ЗМПУ не от того меридиана, от которого нужно.
С помощью CDI можно выполнить вписывание (interception) в новую ЛЗП. Предположим, что по каким-то причинам после пролета САНУЛ поступило указание диспетчера сойти со своей трассы, вписаться в трассу Р22 (на участок ПАНУС- Котлас) и дальше следовать на Котлас уже по ней.
Для этого пилот устанавливает для новой ЛЗП ЗМПУ=48 (подумайте, почему) и планка на CDI уйдет далеко вправо. Ведь самолет пока находится на прежней трассе и оказался далеко слева от новой ЛЗП. Затем пилот выполняет разворот вправо, чтобы с выбранным углом выхода (например, 40-50) выйти на новую трассу Р22. По мере приближения к ней вертикальная планка будет смещаться к центру прибора (ЛБУ уменьшается) и пилот может плавно вписаться в новую ЛЗП.
Такого рода процедуры приходится часто выполнять при полете по аэродромным схемам.
Кстати, не следует путать похожие слова interception (вписывание) и intersection (пересечение, перекресток). Словом intersection обозначают точки на маршруте, которые заданы путем пересечения ЛЗП с ЛРПС (линией пеленга или радиала). Такой точкой является, например, пункт MATIX на рис.5.12).