Что такое tx beamforming
Beamforming
Каждый может попробовать бросить камень в воду, будут волны, распространяющиеся в сторону. Если вы бросите еще один камень, два вида волн будут перекрываться. Если вы бросаете еще больше камней, эти круговые волны будут разбиты, потому что они мешают друг другу. Это похоже на сегодняшние беспроводные помехи: так много беспроводных устройств (маршрутизаторов или точек доступа) распространяют сигнал во всей области, и эти сигналы подобны волнам, мешающим друг другу. Чем больше их, тем более неустойчивым будет ваше интернет-соединение, что вызовет проблемы.
Основы формирования луча
В очень упрощенных объяснениях формирование луча связано с фокусировкой сигнала Wi-Fi в определенном направлении.
Beamforming обещает быстрый, более сильный Wi-Fi-сигнал с большим диапазоном для каждого устройства. Вместо того, чтобы просто транслировать по всех направлениях, маршрутизатор/точка доступа пытается широковещать беспроводные данные, предназначенные для устройства, что является оптимальным для устройства.
802.11ac vs 802.11n
Благодаря спецификации 802.11ac это было исправлено. Существует стандартный способ формирования диаграммы направленности, и любые устройства 802.11ac, которые поддерживают формирование диаграммы направленности, будут работать с другими, которые также это делают. По сути, устройства 802.11ac, такие как ваш маршрутизатор и ноутбук, могут взаимодействовать друг с другом и предоставлять информацию об их относительных позициях.
Типы формирования луча
Существует два типа Beamforming: неявный (implicit) и явный(explicit).
Наличие двух устройств, работающих вместе, даст вам самое сильное возможное соединение, и поэтому явный Beamforming намного эффективнее, чем неявный.
Следует отметить, что поддержка 802.11ac не означает, что устройство поддерживает Beamforming.
Явное формирование луча зависит от обратной связи с клиентом. Это позволяет точке доступа задавать свои параметры формирования луча с большей точностью, что, в свою очередь, позволяет использовать более направленный луч. Вместо того, чтобы звуковые кадры передавались от клиента к точке доступа, они отправляются с точки доступа клиенту. Клиент записывает, как он получил звуковые кадры и строит матрицу (описанную ниже). Затем эта матрица передается обратно в точку доступа. Благодаря ей точка доступа может точно рассчитать, как передавать данные.
С другой стороны, Implicit Beamforming позволяет более старым устройствам без технологии 802.11ac получать некоторые преимущества, принесенные Beamforming. Если ваша точка доступа имеет технологию Beamforming, но клиент нет, соединение всеравно будет немного улучшено.
При использовании неявного формирования луча точка доступа предполагает, что настройки, которые позволяют ей лучше всего слышать клиента, также являются настройками, которые позволяют клиенту лучше всего слышать точку. Это предположение обычно полезно, но не всегда полностью точно. Настройка для неявного формирования луча очень проста. Точка доступа просит клиента отправить предсказуемый набор звуковых кадров. Затем она прослушивает эти звуковые кадры, отмечая, когда и как они принимаются на каждой из своих антенн. Это позволяет точке доступа задуматься о шаблоне, который она должна использовать для передачи.
Явные матрицы формирования луча
Эта матрица известна как информация о состоянии канала Channel State Information (CSI). CSI сжимается и возвращается в точку доступа. Для калибровки явного формирования луча точка доступа должна выполнять инверсию матрицы в CSI. Как только это будет сделано, точка доступа будет применять параметры от инвертированной матрицы к антенной решетке. В результате антенны, которые были услышаны в последний раз, транслируются раньше, чем те, которые были услышаны первыми. Мы можем компенсировать небольшие амплитудные расхождения аналогичным образом.
Размер сжатого CSI может сильно варьироваться в зависимости от количества антенн и количества интересующих нас каналов. Большой CSI может быть более 20 КБ.
В заключение
Beamforming является более сложным, чем другие технологии антенны, но является очень полезным. Антенна является единственным самым слабым звеном в сети, и формирование луча решает эту проблему.
Beamforming / Формирование луча
Beamforming (формирование луча) – происходит, когда точка доступа и конкретный клиент направляют радиочастотные сигналы непосредственно друг на друга, чтобы улучшить пропускную способность для этого клиента. У некоторых производителей могут рекламироваться фирменные наименования, но все они являются реализациями одного и того же стандарта с незначительными улучшениями или дополнениями.
Как это работает
Одна антенна, передающая беспроводной сигнал, излучает этот сигнал во всех направлениях (если только он не заблокирован каким-либо физическим объектом). Так работают электромагнитные волны. Но когда необходимо сфокусировать этот сигнал в определенном направлении, чтобы сформировать целевой луч электромагнитной энергии используется несколько антенн в непосредственной близости, каждая из которых передает один и тот же сигнал в разное время. Перекрывающиеся волны будут создавать помехи, которые в некоторых областях являются конструктивными (они усиливают сигнал), а в других областях – деструктивными (они делают сигнал слабее или не обнаруживаемым). При правильном выполнении этот процесс формирования луча может сфокусировать ваш сигнал там, где вы хотите.
Преимущества и ограничения Beamforming
Фокусируя сигнал в определенном направлении, Beamforming позволяет вам отправлять сигнал более высокого качества для клиентского устройства, что на практике означает более быструю передачу информации и меньшее количество ошибок, без необходимости увеличения мощности вещания. В качестве дополнительного преимущества, поскольку вы не транслируете свой сигнал в направлениях, где он не нужен, формирование луча может уменьшить помехи.
Ограничения формирования диаграммы направленности в основном связаны с необходимыми вычислительными ресурсами. Существует множество сценариев, в которых время и ресурсы требуемые для расчетов формирования диаграммы направленности, сводят на нет ее преимущества. Но постоянные улучшения в мощности и эффективности процессоров сделали методы формирования луча достаточно доступными для встраивания в потребительское сетевое оборудование.
Когда использовать
Формирование луча улучшает ваши характеристики на среднем и дальнем расстоянии. Включение формирования луча может повысить уровень вашего сигнала в ранее труднодоступных местах, таких как край дома или рядом с шкафом. Однако при небольшом пространстве, таком как небольшая квартира или студия, прироста производительности может быть ограничен, поэтому следует протестировать полезна ли опция.
Развитие
Beamforming – 802.11n
Beamforming стало появляться в маршрутизаторах еще в 2008 году, с появлением стандарта Wi-Fi 802.11n и поддерживал технологию с несколькими входами и несколькими выходами, или MIMO, в которой формирование диаграммы направленности необходимо для отправки нескольких перекрывающихся сигналов.
Beamforming – 802.11ac и 802.11ac Wave2
В 2016 году со стандартом 802.11ac все изменилось. Существует набор определенных методов формирования диаграммы направленности для устройств Wi-Fi. В 802.11ac Wave2 – для точек доступа стало возможным отправлять до четырех потоков одновременно и неявное формирование луча.
Beamforming – 802.11ax
В 2019 году 802.11ax допускает восемь одновременных потоков и использует технологию явного формирования луча для более точного наведения этих потоков на антенну приемника.
Способы формирования луча
Есть несколько способов, которыми может работать формирование луча Wi-Fi.
Явное формирование луча (Explicit Beamforming) – если маршрутизатор и конечная точка поддерживают формирование луча в соответствии со стандартом 802.11ac, они начнут свой сеанс связи с небольшого «рукопожатия», которое помогает обеим сторонам установить свои соответствующие местоположения и канал, по которому они будут производить передачу данных.
Неявное формирование луча (Implicit Beamforming) / Универсальное формирование луча (Universal Beamforming) – если клиентские устройства поддерживающие только 802.11n или более старые стандарты, то маршрутизатор с формированием диаграммы направленности все еще может пытаться нацеливаться на эти устройства, но без помощи со стороны конечной точки он не сможет выполнить настройку с такой точностью. Теоретически данный способ формирования луча работает с любым устройством.
Beamforming и MU-MIMO / SU-MIMO
Формирование луча является ключевым моментом для поддержки многопользовательской MIMO или MU-MIMO.
SU-MIMO использует формирование луча для улучшения мощности сигнала и достижения более высоких скоростей для одного клиента.
MU-MIMO использует формирование луча, чтобы направить энергию одному клиенту и отвести эту энергию от других клиентов, адресованных при передаче MU-MIMO, таким образом связь от маршрутизатора эффективно нацелена на каждого подключенного клиента.
Что такое MU-MIMO и что это дает конечному пользователю?
Что такое MIMO?
SU-MIMO и MU-MIMO: в чем различие?
Работа многопользовательского МИМО начинается с 802.11ax, 802.11ac Wave2. Старшие стандарты, такие как 802.11b, g и n его не поддерживают. Когда в 2015 году вышел стандарт ac Wave 2, с этой технологией могли работать только маршрутизаторы и точки доступа.
Технология MU-MIMO изнутри
В 2008 году стандарт 802.11n представил технологию multi-in multi-out (MIMO), предназначенную для повышения пропускной способности Wi-Fi между точками доступа и клиентскими устройствами. Чтобы MIMO работал, две беспроводные станции (т.е. и точка доступа, и клиентское устройство) должны иметь несколько антенн, которые идентичны и физически отделены друг от друга фиксированным расстоянием, чтобы отсутствовала разность фаз на рабочей длине волны.
Пространственное мультиплексирование (Spatial Mutiplexing)
Пространственный поток представляет собой набор данных, посланный передающими антеннами, который может быть математически реконструирован на антеннах приемника. В MIMO каждый пространственный поток передается с разных антенн в том же частотном канале, на котором работает передатчик. Рисунок ниже иллюстрирует это для случая с двумя потоками.
Приемник принимает каждый поток на идентичную радио цепь. Поскольку он знает смещения фазы своих собственных антенн, он может использовать математические методы обработки сигналов для реконструкции исходных потоков. Чтобы повысить пропускную способность нужно увеличивать количество потоков. Каждый пространственный поток содержит набор уникальных данных, а количество независимых пространственных потоков ограничено тем, какое Wi-Fi устройство имеет наименьшее количество радиолиний.
В первой волне 802.11ac пропускная способность повышалась не только за счет использования MIMO, а применялись и другие механизмы:
Однако общая ширина полосы в любом частотном диапазоне является «конечной» и это накладывает свои ограничения. Чем шире канал, тем больше он подвержен помехам.
Beamforming (адаптивное формирование диаграммы направленности луча)
Многопользовательский MIMO (MU-MIMO) повышает пропускную способность канала за счет одновременной передачи данных на множество клиентов. Но есть еще другая эффективная технология – формирование диаграммы направленности луча в нисходящем канале – TxBF.
TxBF впервые была представлена в стандарте 802.11n, но широкого распространения не получила. Если в MIMO с каждой антенны отправляются разные пространственные потоки, то при формировании луча с нескольких антенн отправляется один и тот же поток со сдвигом фаз.
Роутер отправляет служебную информацию к клиенту со всех своих антенн, а клиент в обязательном порядке отвечает роутеру матрицей, которая указывает, что он увидел от каждой из антенн. Программное обеспечение маршрутизатора вычисляет примерное местоположение клиента и вносит поправки в работу всех своих передатчиков таким образом, что бы максимизировать сигнал на клиенте.
Например, для устранения замираний на одной из антенн изменяется фазовый сдвиг или увеличивается амплитуда сигнала для прохождения преграды. Если сигнал с разных антенн приходит синфазно и с одинаковой мощностью, он складывается – это понятие называется конструктивной интерференцией. В этом случаем за счет увеличения мощности сигнала возрастает скорость передачи данных и максимальное расстояние до клиента. И наоборот если приходит два сигнал с противоположной фазой они гасятся, и результирующая амплитуда сигнала может быть равна нулю – это называется деструктивной интерференцией радиоволн.
Для формирования диаграммы направленности требуется использование фазированной антенной решетки, в которой имеется множество одинаковых антенн и они разнесены на фиксированное друг от друга расстояние (для работы в противофазе).
За счет одновременной передачи данных сразу нескольким клиентам и поддержки множества пространственных потоков MU-MIMO позволяет увеличить канальную скорость в полосе.
Механизм передачи информации в MU-MIMO
Максимальное количество одновременно работающих клиентов на единицу меньше, чем общее количество доступных потоков роутера. Это математическое ограничение и вот почему. Точка доступа должна контролировать как зоны максимальной конструктивной интерференции для фокусирования самого сильного сигнала на клиентском устройстве, так и зоны максимальной деструктивной интерференции, чтобы минимизировать сигнал на других клиентских устройствах в этой группе.
Математически число переменных превышает число неизвестных, поэтому одним потоком нельзя управлять независимо. Таким образом, для текущего поколения точек доступа 802.11ac Wave 2 с поддержкой MU-MIMO 4×4: 4 допустима следующая комбинация групп:
Совместное использование пространственного мультиплексирования и адаптивного формирования диаграммы направленности луча позволяет:
IoT (Интернет вещей) и MU-MIMO
Стандарт 802.11ax может поддерживать одновременно восемь передач MU-MIMO, по сравнению с четырьмя в 802.11ac. Одновременная поддержка восьми выделенных каналов позволяет большему количеству IoT устройств установить связь с точкой доступа и избежать проблем с пропускной способностью, которые существовали в более ранних версиях Wi-Fi, включая 802.11ac. Это особенно актуально, если в помещении большое количество устройств, обладающих низкой скоростью передачи данных (а это как раз и есть IoT).
Практические ограничения MU-MIMO
Комментарии
Даниил 2021-05-14 10:37:00
Усиление сотовой связи и интернета 4G под ключ за один день
ОСТАВИТЬ ЗАЯВКУ НА УСИЛЕНИЕ СОТОВОЙ СВЯЗИ
Для чего в роутерах применяется Beamforming
Возможность формировать луч – удобное решение для трансляции сигнала. Благодаря такому подходу он не идёт бесцельно во все стороны, пытаясь достичь цели, а фокусируется именно на точке назначения.
В теории это кажется очень простым. На деле – сложная для реализации задача, с которой справились не сразу. Сейчас в нижнем ценовом диапазоне – SOHO сегменте – эффект практически недостижим. Но формирование луча для трансляции сигнала стало доступным в домашних роутерах с пятого поколения Wi-Fi, т.е. с показателями 802.11 ас и выше.
Как развивалась технология Beamforming
В старом стандарте 802.11nформирование луча являлось дополнительной функцией, но правильность её реализации была под вопросом. Компания IEEE, устанавливающая международные стандарты использования, не дала разъяснений. Из-за этого несовместимость выбранных роутера и Wi-Fi адаптера могла стать частой проблемой. В таком случае не получилось бы должного эффекта от формирования луча.
Теперь доступность Beamforming обеспечивается приёмниками и передатчиками, использующими технологию MIMO. Она подразумевает множественный выход и множественный вход. Сейчас с помощью Beamforming данные принимают и отправляют путём подключения нескольких антенн. Это увеличивает дальность луча и пропускную способность.
ИзначальноMIMO работала по стандарту 802.11n. Технология и на сегодняшний день представляет собой одну из важных функций стандартов 802.11ax и 802.11as. Схемы, по которым может работать MIMO:
Цифра означает количество поддерживаемых пространственных потоков, используемых для приёма и передачи данных.
Различия между неявным и явным формированием луча
Существует два варианта формирования диаграммы: явное и неявное. При явном фокусировка луча возможна только в случае поддержки его формирования устройством на другом конце. Такой вариант обозначается как eBF, в расшифровке – explicit Beamforming. При явном формировании диаграммы применяются специальные калибровочные кадры от клиента. eBF поддерживается в стандартах 802.11ас и ах.
Неявная фокусировка луча обозначается как iBF, в расшифровке – implicit Beamforming. Фактически это тот же алгоритм, что и eBF, но в упрощённом виде. В данном случае система работает так, что маршрутизатор проводит оценку канала связи, используя для этого данные, принятые от клиента.
Точка доступа выдаёт информацию о том, на каких скоростях возможна работа. И, в зависимости от того, какими были параметры принятого сигнала, выдаёт ответ, на какой скорости будет работать. Итерации позволяют точке доступа поменять фазовый сдвиг на антеннах и скорость в целом. Затем ожидается ответ клиента: если он повысил скорость, на этом процесс заканчивается. Если нет, сигналы будут отправляться до нужного результата.
Beamforming – технология, позволяющая увеличить скорость беспроводного интернета. Если она применяется одновременно с MIMO, результаты становятся ещё лучше.
13 вещей, которые необходимо знать о MU-MIMO Wi-Fi
Что такое MU-MIMO и зачем это нужно?
Одно из самых существенных и важных нововведений Wi-Fi за прошедшие 20 лет – технология Multi User – Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.
Давайте разберемся как это работает!
Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных. Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.
SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.
Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.
По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, чтонесфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.
С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.
Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.
Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали
Сегодня беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.
MU-MIMO использует только «Downstream» поток (от точки доступа к мобильному устройству).
В отличие от SU-MIMO, технология MU-MIMO в настоящее время работает только для передачи данных от точки доступа к мобильному устройству. Только беспроводные маршрутизаторы или точки доступа могут одновременно передавать данные нескольким пользователям, будь то один или несколько потоков для каждого из них. Сами же беспроводные устройства (такие, как смартфоны, планшеты или ноутбуки) по-прежнему должны по очереди направлять данные к беспроводному маршрутизатору или точке доступа, хотя при этом при наступлении их очереди они по отдельности могут использовать технологию SU-MIMO для передачи нескольких потоков.
Технология MU-MIMO будет особенно полезной в тех сетях, где пользователи больше скачивают данные, чем загружают.
Возможно, в будущем будет реализована версия технологии Wi-Fi: 802.11ax, где метод MU-MIMO будем применим и для «Upstream» трафика.
MU-MIMO работает только в Wi-Fi-диапазоне частот 5 ГГц
Технология SU-MIMO работает как в диапазоне частот 2,4 ГГц, так и 5 ГГц. Беспроводные роутеры и точки доступа второго поколения стандарта 802.11ac Wave 2 могут одновременно обслуживать несколько пользователей только на полосе частот 5 ГГц. С одной стороны, конечно, жаль, что на более узкой и более перегруженной полосе частот 2,4 ГГц мы не сможем использовать новую технологию. Но, с другой стороны, на рынке появляется все больше двухдиапазонных беспроводных устройств, поддерживающих технологию MU-MIMO, которые мы можем использовать для разворачивания производительных корпоративных Wi-Fi-сетей.
Технология Beamforming помогает направлять сигналы
В литературе СССР можно встретить понятие Фазированная Антенная Решётка, которая была разработана для военных радаров в конце 80-х. Аналогичная технология была применена в современном Wi-Fi. MU-MIMO использует технологию формирования направленного сигнала (в англоязычной технической литературе известной как «beamforming»). Beamfiorming позволяет направлять сигналы в направлении предполагаемого местоположения беспроводного устройства (или устройств), а не посылать их случайным образом во всех направлениях. Таким образом получается сфокусировать сигнал и существенно увеличить дальность действия и скорость работы Wi-Fi-соединения.
Хотя технология beamforming стала опционально доступна еще со стандартом 802.11n, тем ни менее большинство производителей реализовывали свои проприетарные версии этой технологии. Эти вендоры и сейчас предлагают проприетарные реализации технологии в своих устройствах, но теперь им придется включить хотя бы упрощенную и стандартизированную версию технологии формирования направленного сигнала, если они хотят поддерживать технологию MU-MIMO в своей продуктовой линейке стандарта 802.11ac.
MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств
К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).
От пользовательских устройств не требуется наличие нескольких антенн
Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.
Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.
Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои ноутбуки и планшеты поддержкой технологии MU-MIMO.
Точки доступа выполняют «тяжелую» обработку
Стремясь к упрощению требований к устройствам конечных пользователей, разработчики технологии MU-MIMO постарались переложить на точки доступа большую часть работы по обработке сигнала. Это еще один шаг вперед по сравнению с технологией SU-MIMO, где бремя по обработке сигнала большей частью лежало на пользовательских устройствах. И опять же, это поможет производителям клиентских устройств экономить на мощности, размере и других затратах при производстве своих продуктовых решений с поддержкой MU-MIMO, что должно весьма позитивно сказаться на популяризации данной технологии.
Даже бюджетные устройства получают ощутимую выгоду от одновременной передачи через несколько пространственных поток
Подобно агрегации каналов в сети Ethernet (802.3ad и LACP), объединение потоков 802.1ac не увеличивает скорость соединения «точка-точка». Т.е. если вы единственный пользователь и у Вас запущено только одно приложение — вы задействует только 1 пространственный поток.
Однако существует возможность увеличить общую пропускную способность сети за счет предоставления возможности по обслуживанию точкой доступа нескольких пользовательских устройств одновременно.
Но если все используемые в вашей сети пользовательские устройства поддерживают работу только с одним потоком, то MU-MIMO позволит вашей точке доступа обслуживать одновременно до трех устройств, вместо одного за раз, в то время как другим (более продвинутым) пользовательским устройствам придется ожидать своей очереди.
Рисунок 2. Технология MU-MIMO за то же самое время может позволить отправить в три раза больший объем данных, чем SU-MIMO, тем самым более чем в два раза увеличивая скорость получения данных каждым клиентским устройством
Некоторые пользовательские устройства имеют скрытую поддержку технологии MU-MIMO
Не смотря на то, что в настоящее время все еще не так много маршрутизаторов, точек доступа или мобильных устройств поддерживают MU-MIMO, в компании-производителе Wi-Fi-чипов утверждают, что часть производителей в своем производственном процессе учла аппаратные требования для поддержки новой технологии для некоторых своих устройств для конечных пользователей еще несколько лет назад. Для таких устройств относительно простое обновление программного обеспечения добавит поддержку технологии MU-MIMO, что также должно ускорить популяризацию и распространение технологии, а также стимулировать компании и организации модернизировать свои корпоративные беспроводные сети с помощью оборудования с поддержкой стандарта 802.11ac.
Устройства без поддержки MU-MIMO также оказываются в выигрыше
Не смотря на то, что Wi-Fi-устройства обязательно должны иметь поддержку MU-MIMO для того, чтобы использовать эту технологию, даже те клиентские устройства, которые такой поддержкой не имеют, могут получить косвенную выгоду от работы в беспроводной сети, где маршрутизатор или точки доступа поддерживают технологию MU-MIMO. Следует помнить, что скорость передачи данных по сети напрямую зависит от общего времени, в течение которого абонентские устройства подключены к радиоканалу. И если технология MU-MIMO позволит обслуживать часть устройств быстрее, то это означает, что у точек доступа в такой сети останется больше времени на обслуживание других клиентских устройств.
MU-MIMO помогает увеличить пропускную способность беспроводной сети
Когда вы увеличиваете скорость Wi-Fi-соединения, вы также увеличиваете пропускную способность беспроводной сети. Так как устройства обслуживаются более быстро, то у сети появляется больше эфирного времени на обслуживание большего количества клиентских устройств. Таким образом, технология MU-MIMO может значительно оптимизировать работу беспроводных сетей с интенсивным трафиком или большим количеством подключенных устройств, таких как общественные Wi-Fi-сети. Это прекрасная новость, так как количество смартфонов и других мобильных устройств с возможностью подключения к Wi-Fi-сети, скорее всего, продолжит увеличиваться.
Поддерживается любая ширина канала
Одним из способов расширения пропускной способности Wi-Fi-канала является связывание каналов, когда объединяются два соседних канала в один канал, который в два раза шире, что фактически удваивает скорость Wi-Fi-соединения между устройством и точкой доступа. Стандарт 802.11n предусматривал поддержку каналов шириной до 40 МГц, в оригинальной спецификации стандарта 802.11ac поддерживаемая ширина канала была увеличена до 80 МГц. В обновленном стандарте 802.11ac Wave 2 поддерживаются каналы шириной 160 МГц.
Рисунок 3. На сегодняшний день стандарт 802.11ac поддерживает каналы шириной до 160 МГц в диапазоне частот 5 ГГц
Однако, не следует забывать, что использование в беспроводной сети каналов большей ширины увеличивает вероятность возникновения помех в совмещенных каналах. Поэтому такой подход не всегда будет правильным выбором для разворачивания всех без исключения Wi-Fi-сетей. Тем ни менее, технология MU-MIMO, как мы можем убедиться, может быть использована для каналов любой ширины.
Тем ни менее, даже если ваша беспроводная сеть использует более узкие каналы шириной 20 МГц или 40 МГц, технология MU-MIMO все равно может помочь ей работать быстрее. А вот насколько быстрее, будет зависеть от того, сколько необходимо будет обслуживать клиентских устройств и сколько потоков каждое из этих устройств поддерживает. Таким образом, использование технологии MU-MIMO даже без широких связанных каналов может более чем в два раза увеличить пропускную способность выходного беспроводного соединения для каждого устройства.
Обработка сигналов повышает безопасность
Интересным побочным эффектом технологии MU-MIMO является то, что маршрутизатор или точка доступа шифрует данные перед их отправкой через радиоканалы. Достаточно трудно декодировать данные, передаваемые с использованием технологии MU-MIMO, т. к. не ясно какая часть кода в каком пространственном потоке находится. Хотя впоследствии могут быть разработаны специальные инструменты, позволяющие другим устройствам перехватывать передаваемый трафик, на сегодняшний день технология MU-MIMO эффективно маскирует данные от расположенных вблизи устройств прослушивания. Таким образом, новая технология помогает повысить Wi-Fi-безопасность, что особенно актуально для открытых беспроводных сетей, таких как общественные Wi-Fi-сети, а также точек доступа, работающих в персональном режиме или использующих упрощенный режим аутентификации пользователей (Pre-Shared Key, PSK) на базе технологий защиты Wi-Fi-сети WPA или WPA2.
MU-MIMO лучше всего подходит для неподвижных Wi-Fi-устройств
Также существует одно предостережение о технологии MU-MIMO: она не очень хорошо работает с быстродвижущимися устройствами, так как процесс формирования направленного сигнала по технологии beamforming становится более сложным и менее эффективным. Поэтому MU-MIMO не сможет обеспечить вам заметную пользу для устройств, часто использующих роуминг в вашей корпоративной сети. Однако, следует понимать, что эти «проблемные» устройства никак не должны повлиять ни на MU-MIMO-передачу данных другим клиентским устройствам, которые менее подвижны, ни на их производительность.