Что такое tls сертификат
«Как это работает»: знакомство с SSL/TLS
Мы достаточно часто рассказываем о разных технологиях: от систем хранения до резервного копирования. Помимо этого мы делимся собственным опытом оптимизации работы нашего IaaS-провайдера — говорим об управленческих аспектах и возможностях для улучшения usability сервиса.
Сегодня мы решили затронуть тему безопасности и поговорить об SSL. Всем известно, что сертификаты обеспечивают надежное соединение, а мы разберёмся в том, как именно это происходит, и взглянем на используемые протоколы.
SSL (secure sockets layer — уровень защищённых cокетов) представляет собой криптографический протокол для безопасной связи. С версии 3.0 SSL заменили на TLS (transport layer security — безопасность транспортного уровня), но название предыдущей версии прижилось, поэтому сегодня под SSL чаще всего подразумевают TLS.
Цель протокола — обеспечить защищенную передачу данных. При этом для аутентификации используются асимметричные алгоритмы шифрования (пара открытый — закрытый ключ), а для сохранения конфиденциальности — симметричные (секретный ключ). Первый тип шифрования более ресурсоемкий, поэтому его комбинация с симметричным алгоритмом помогает сохранить высокую скорость обработки данных.
Рукопожатие
Когда пользователь заходит на веб-сайт, браузер запрашивает информацию о сертификате у сервера, который высылает копию SSL-сертификата с открытым ключом. Далее, браузер проверяет сертификат, название которого должно совпадать с именем веб-сайта.
Кроме того, проверяется дата действия сертификата и наличие корневого сертификата, выданного надежным центром сертификации. Если браузер доверяет сертификату, то он генерирует предварительный секрет (pre-master secret) сессии на основе открытого ключа, используя максимально высокий уровень шифрования, который поддерживают обе стороны.
Сервер расшифровывает предварительный секрет с помощью своего закрытого ключа, соглашается продолжить коммуникацию и создать общий секрет (master secret), используя определенный вид шифрования. Теперь обе стороны используют симметричный ключ, который действителен только для данной сессии. После ее завершения ключ уничтожается, а при следующем посещении сайта процесс рукопожатия запускается сначала.
Алгоритмы шифрования
Для симметричного шифрования использовались разные алгоритмы. Первым был блочный шифр DES, разработанный компанией IBM. В США его утвердили в качестве стандарта в 70-х годах. В основе алгоритма лежит сеть Фейстеля с 16-ю циклами. Длина ключа составляет 56 бит, а блока данных — 64.
Развитием DES является алгоритм 3DES. Он создавался с целью совершенствования короткого ключа в алгоритме-прародителе. Размер ключа и количество циклов шифрования увеличилось в три раза, что снизило скорость работы, но повысило надежность.
Еще был блочный шифр RC2 с переменной длиной ключа, который работал быстрее DES, а его 128-битный ключ был сопоставим с 3DES по надежности. Потоковый шифр RC4 был намного быстрее блочных и строился на основе генератора псевдослучайных битов. Но сегодня все эти алгоритмы считаются небезопасными или устаревшими.
Самым современным признан стандарт AES, который официально заменил DES в 2002 году. Он основан на блочном алгоритме Rijndael и скорость его работы в 6 раз выше по сравнению с 3DES. Размер блока здесь равен 128 битам, а размер ключа — 128/192/256 битам, а количество раундов шифрования зависит от размера ключа и может составлять 10/12/14 соответственно.
Что касается асимметричного шифрования, то оно чаще всего строится на базе таких алгоритмов, как RSA, DSA или ECC. RSA (назван в честь авторов Rivest, Shamir и Adleman) используется и для шифрования, и для цифровой подписи. Алгоритм основан на сложности факторизации больших чисел и поддерживает все типы SSL-сертификатов.
DSA (Digital Signature Algorithm) используется только для создания цифровой подписи и основан на вычислительной сложности взятия логарифмов в конечных полях. По безопасности и производительности полностью сопоставим с RSA.
ECC (Elliptic Curve Cryptography) определяет пару ключей с помощью точек на кривой и используется только для цифровой подписи. Основным преимуществом алгоритма является более высокий уровень надежности при меньшей длине ключа (256-битный ECC-ключ сопоставим по надежности с 3072-битным RSA-ключом.
Более короткий ключ также влияет на время обработки данных, которое заметно сокращается. Этот факт и то, что алгоритм эффективно обрабатывает большое количество подключений, сделали его удобным инструментом для работы с мобильной связью. В SSL-сертификатах можно использовать сразу несколько методов шифрования для большей защиты.
Хеш и MAC
Цель хеш-алгоритма — преобразовывать все содержимое SSL-сертификата в битовую строку фиксированной длины. Для шифрования значения хеша применяется закрытый ключ центра сертификации, который включается в сертификат как подпись.
Хеш-алгоритм также использует величину, необходимую для проверки целостности передаваемых данных — MAC (message authentication code). MAC использует функцию отображения, чтобы представлять данные сообщения как фиксированное значение длины, а затем хеширует сообщение.
В протоколе TLS применяется HMAC (hashed message authentication code), который использует хеш-алгоритм сразу с общим секретным ключом. Здесь ключ прикрепляется к данным, и для подтверждения их подлинности обе стороны должны использовать одинаковые секретные ключи, что обеспечивает большую безопасность.
Все алгоритмы шифрования сегодня поддерживают алгоритм хеширования SHA2, чаще всего именно SHA-256. SHA-512 имеет похожую структуру, но в нем длина слова равна 64 бита (вместо 32), количество раундов в цикле равно 80 (вместо 64), а сообщение разбивается на блоки по 1024 бита (вместо 512 бит). Раньше для тех же целей применялся алгоритм SHA1 и MD5, но сегодня они считаются уязвимыми.
Разговоры об отказе от SHA1 велись достаточно давно, но в конце февраля алгоритм был официально взломан. Исследователям удалось добиться коллизии хешей, то есть одинакового хеша для двух разных файлов, что доказало небезопасность использования алгоритма для цифровых подписей. Первая попытка была сделана еще в 2015, хотя тогда удалось подобрать только те сообщения, хеш которых совпадал. Сегодня же речь идет о целых документах.
Сертификаты бывают разные
Теперь, когда мы разобрались, что представляет собой протокол SSL/TLS и как происходит соединений на его основе, можно поговорить и о видах сертификатов.
Domain Validation, или сертификаты с проверкой домена, подходят для некоммерческих сайтов, так как они подтверждают только веб-сервер, обслуживающий определенный сайт, на который был осуществлен переход. Этот вид сертификата самый дешевый и популярный, но не может считаться полностью безопасным, так как содержит только информацию о зарегистрированном доменном имени.
Organization Validation, или сертификаты с проверкой организации, являются более надежными, так как подтверждают еще регистрационные данные компании-владельца. Эту информацию юридическое лицо обязано предоставить при покупке сертификата, а удостоверяющий центр может связаться напрямую с компанией для подтверждения этой информации. Сертификат отвечает стандартам RFC и содержит информацию о том, кто его подтвердил, но данные о владельце не отображаются.
Extended Validation, или сертификат с расширенной проверкой, считается самым надежным. Собственно, зеленый замочек или ярлык в браузере означает как раз то, что у сайта есть именно такой сертификат. О том, как разные браузеры информируют пользователей о наличии сертификата или возникающих ошибках можно почитать тут.
Он нужен веб-сайтам, которые проводят финансовые транзакции и требуют высокий уровень конфиденциальности. Однако многие сайты предпочитают перенаправлять пользователей для совершения платежей на внешние ресурсы, подтвержденные сертификатами с расширенной проверкой, при этом используя сертификаты OV, которых вполне хватает для защиты остальных данных пользователей.
Кроме того, сертификаты могут различаться в зависимости от количества доменов, на которые они были выданы. Однодоменные сертификаты (Single Certificate) привязываются к одному домену, который указывается при покупке. Мультидоменные сертификаты (типа Subject Alternative Name, Unified Communications Certificate, Multi Domain Certificate) будут действовать уже для большего числа доменных имен и серверов, которые также определяются при заказе. Однако за включение дополнительных доменов, свыше определенной нормы, потребуется платить отдельно.
Еще существуют поддоменные сертификаты (типа WildCard), которые охватывают все поддомены указанного при регистрации доменного имени. Иногда могут потребоваться сертификаты, которые будут одновременно включать не только несколько доменов, но и поддомены. В таких случаях можно приобрести сертификаты типа Comodo PositiveSSL Multi-Domain Wildcard и Comodo Multi-Domain Wildcard SSL или (лайфхак) обычный мультидоменный сертификат, где в списке доменов указать также и нужные поддоменные имена.
Получить SSL-сертификат можно и самостоятельно: пара ключей для этого генерируется через любой генератор, например, бесплатный OpenSSL. И такой защищенный канал связи вполне получится использовать для внутренних целей: между устройствами своей сети или приложениями. Но вот для использования на веб-сайте сертификат необходимо приобретать официально, чтобы в цепочке подтверждения сертификатов обязательно имелся корневой сертификат, браузеры не показывали сообщений о небезопасном соединении, а пользователи были спокойны за свои данные.
TLS и Веб-Сертификаты
А мы вот запустили тихой сапой один из самых необычных для нас курсов — «Цифровая подпись в информационной безопасности». Несмотря на всё мы вроде справились и людей привлекли, посмотрим, что получится. А сегодня мы разберём оставшийся интересный материал и посмотрим вкратце, как работает TLS, а также в чем разница между недоверенным и доверенным веб-сертификатами.
Перевод — dzone.com/articles/a-look-at-tls-transport-layer-security
Автор — Arun Pandey
TLS — сокращение от Transport Layer Security (протокол защиты транспортного уровня), основан на SSL. Как следует из названия, это протокол, работающий на транспортном уровне.
Как известно, безопасность связи — очень распространенная головная боль, но корректная реализация TLS может перенести веб-безопасность на новый уровень. В среде с внедренным TLS злоумышленник может получить информацию о хосте, к которому вы пытаетесь подключиться, узнать какое шифрование используется, прервать соединение, но сделать что-то кроме этого — не получится.
Почти во всех протоколах связи есть три основных части: шифрование данных, аутентификация и целостность данных.
В этом протоколе шифровать данные можно двумя способами: используя Криптосистему с Открытым Ключом или Симметричные Криптосистемы. Криптосистема с открытым ключом, как реализация, совершенней симметричных криптосистем.
Краткий обзор Криптосистемы с Открытым Ключом и Симметричных Криптосистем
Криптосистема с открытым ключом, являющаяся разновидностью Асимметричного Шифрования, использует открытый-закрытый ключ. Так открытый ключ B используется для шифрования данных A (B поделился открытым ключом с A), а после получения зашифрованных данных B расшифровывает их, используя собственный закрытый ключ.
В Симметричных Криптосистемах используется один и тот же ключ и для расшифровки, и для шифрования, поэтому секретный ключ у A и B будет один и тот же. И это является большим недостатком.
А теперь посмотрим, как работает аутентификация в TLS. Чтобы убедиться в подлинности отправителя сообщения и обеспечить получателя средствами для шифрования ответа, аутентификация может быть достигнута с помощью цифровых сертификатов. Операционные системы и браузеры хранят списки доверенных сертификатов, которые они могут подтвердить.
Доверенные vs. Недоверенные Сертификаты
Цифровые сертификаты бывают двух категорий. Доверенные сертификаты подписываются Центром Сертификации (Certificate Authority, кратко — CA), в то время как недоверенные сертификаты — самоподписанные.
Доверенные сертификаты находятся в веб-браузере и подписываются CA. Это необходимо для обеспечения наивысшего уровня надежности. Предположим, сайт “xyz.com” хочет получить доверенный цифровой сертификат от известного сертификационного центра “Comodo”.
Шаги будут следующими:
Недоверенный сертификат подписывается самим владельцем сайта. Такой метод подходит, если проблемы надежности не актуальны.
Заметим, что в реализации TLS не принято использовать недоверенный сертификат.
Что такое TLS
Данный текст является вольным переводом вот этой главы замечательной книги «High Performance Browser Networking» авторства Ильи Григорика. Перевод выполнялся в рамках написания курсовой работы, потому очень вольный, но тем не менее будет полезен тем, кто слабо представляет что такое TLS, и с чем его едят.
Общие сведения о TLS
Протокол TLS (transport layer security) основан на протоколе SSL (Secure Sockets Layer), изначально разработанном в Netscape для повышения безопасности электронной коммерции в Интернете. Протокол SSL был реализован на application-уровне, непосредственно над TCP (Transmission Control Protocol), что позволяет более высокоуровневым протоколам (таким как HTTP или протоколу электронной почты) работать без изменений. Если SSL сконфигурирован корректно, то сторонний наблюдатель может узнать лишь параметры соединения (например, тип используемого шифрования), а также частоту пересылки и примерное количество данных, но не может читать и изменять их.
Конкретное место TLS (SSL) в стеке протоколов Интернета показано на схеме:
После того, как протокол SSL был стандартизирован IETF (Internet Engineering Task Force), он был переименован в TLS. Поэтому хотя имена SSL и TLS взаимозаменяемы, они всё-таки отличаются, так как каждое описывает другую версию протокола.
Первая выпущенная версия протокола имела название SSL 2.0, но была довольно быстра заменена на SSL 3.0 из-за обнаруженных уязвимостей. Как уже упоминалось, SSL был разработан компанией Netscape, так что в январе 1999 года IETF открыто стандартизирует его под именем TLS 1.0. Затем в апреле 2006 года была опубликована версия TLS 1.1, которая расширяла первоначальные возможности протокола и закрывала известные уязвимости. Актуальная версия протокола на данный момент – TLS 1.2, выпущенная в августе 2008 года.
Как уже говорилось, TLS был разработан для работы над TCP, однако для работы с протоколами дейтаграмм, такими как UDP (User Datagram Protocol), была разработана специальная версия TLS, получившая название DTLS (Datagram Transport Layer Security).
Шифрование, аутентификация и целостность
Также в рамках процедуры TLS Handshake имеется возможность установить подлинность личности и клиента, и сервера. Например, клиент может быть уверен, что сервер, который предоставляет ему информацию о банковском счёте, действительно банковский сервер. И наоборот: сервер компании может быть уверен, что клиент, подключившийся к нему – именно сотрудник компании, а не стороннее лицо (данный механизм называется Chain of Trust и будет рассмотрен в соответствующем разделе).
Наконец, TLS обеспечивает отправку каждого сообщения с кодом MAC (Message Authentication Code), алгоритм создания которого – односторонняя криптографическая функция хеширования (фактически – контрольная сумма), ключи которой известны обоим участникам связи. Всякий раз при отправке сообщения, генерируется его MAC-значение, которое может сгенерировать и приёмник, это обеспечивает целостность информации и защиту от её подмены.
Таким образом, кратко рассмотрены все три механизма, лежащие в основе криптобезопасности протокола TLS.
TLS Handshake
Перед тем, как начать обмен данными через TLS, клиент и сервер должны согласовать параметры соединения, а именно: версия используемого протокола, способ шифрования данных, а также проверить сертификаты, если это необходимо. Схема начала соединения называется TLS Handshake и показана на рисунке:
Также имеется дополнительное расширение процедуры Handshake, которое имеет название TLS False Start. Это расширение позволяет клиенту и серверу начать обмен зашифрованными данными сразу после установления метода шифрования, что сокращает установление соединения на одну итерацию сообщений. Об этом подробнее рассказано в пункте “TLS False Start”.
Обмен ключами в протоколе TLS
По различным историческим и коммерческим причинам чаще всего в TLS используется обмен ключами по алгоритму RSA: клиент генерирует симметричный ключ, подписывает его с помощью открытого ключа сервера и отправляет его на сервер. В свою очередь, на сервере ключ клиента расшифровывается с помощью закрытого ключа. После этого обмен ключами объявляется завершённым. Данный алгоритм имеет один недостаток: эта же пара отрытого и закрытого ключей используется и для аутентификации сервера. Соответственно, если злоумышленник получает доступ к закрытому ключу сервера, он может расшифровать весь сеанс связи. Более того, злоумышленник может попросту записать весь сеанс связи в зашифрованном варианте и занять расшифровкой потом, когда удастся получить закрытый ключ сервера. В то же время, обмен ключами Диффи-Хеллмана представляется более защищённым, так как установленный симметричный ключ никогда не покидает клиента или сервера и, соответственно, не может быть перехвачен злоумышленником, даже если тот знает закрытый ключ сервера. На этом основана служба снижения риска компрометации прошлых сеансов связи: для каждого нового сеанса связи создаётся новый, так называемый «временный» симметричный ключ. Соответственно, даже в худшем случае (если злоумышленнику известен закрытый ключ сервера), злоумышленник может лишь получить ключи от будущих сессий, но не расшифровать ранее записанные.
На текущий момент, все браузеры при установке соединения TLS отдают предпочтение именно сочетанию алгоритма Диффи-Хеллмана и использованию временных ключей для повышения безопасности соединения.
Следует ещё раз отметить, что шифрование с открытым ключом используется только в процедуре TLS Handshake во время первоначальной настройки соединения. После настройки туннеля в дело вступает симметричная криптография, и общение в пределах текущей сессии зашифровано именно установленными симметричными ключами. Это необходимо для увеличения быстродействия, так как криптография с открытым ключом требует значительно больше вычислительной мощности.
Возобновление сессии TLS
Как уже отмечалось ранее, полная процедура TLS Handshake является довольно длительной и дорогой с точки зрения вычислительных затрат. Поэтому была разработана процедура, которая позволяет возобновить ранее прерванное соединение на основе уже сконфигурированных данных.
Начиная с первой публичной версии протокола (SSL 2.0) сервер в рамках TLS Handshake (а именно первоначального сообщения ServerHello) может сгенерировать и отправить 32-байтный идентификатор сессии. Естественно, в таком случае у сервера хранится кэш сгенерированных идентификаторов и параметров сеанса для каждого клиента. В свою очередь клиент хранит у себя присланный идентификатор и включает его (конечно, если он есть) в первоначальное сообщение ClientHello. Если и клиент, и сервер имеют идентичные идентификаторы сессии, то установка общего соединения происходит по упрощённому алгоритму, показанному на рисунке. Если нет, то требуется полная версия TLS Handshake.
Процедура возобновления сессии позволяет пропустить этап генерации симметричного ключа, что существенно повышает время установки соединения, но не влияет на его безопасность, так как используются ранее нескомпрометированные данные предыдущей сессии.
Однако здесь имеется практическое ограничение: так как сервер должен хранить данные обо всех открытых сессиях, это приводит к проблеме с популярными ресурсами, которые одновременно запрашиваются тысячами и миллионами клиентов.
Для обхода данной проблемы был разработан механизм «Session Ticket», который устраняет необходимость сохранять данные каждого клиента на сервере. Если клиент при первоначальной установке соединения указал, что он поддерживает эту технологию, то в сервер в ходе TLS Handshake отправляет клиенту так называемый Session Ticket – параметры сессии, зашифрованные закрытым ключом сервера. При следующем возобновлении сессии, клиент вместе с ClientHello отправляет имеющийся у него Session Ticket. Таким образом, сервер избавлен от необходимости хранить данные о каждом соединении, но соединение по-прежнему безопасно, так как Session Ticket зашифрован ключом, известным только на сервере.
TLS False Start
Технология возобновления сессии бесспорно повышает производительность протокола и снижает вычислительные затраты, однако она не применима в первоначальном соединении с сервером, или в случае, когда предыдущая сессия уже истекла.
Для получения ещё большего быстродействия была разработана технология TLS False Start, являющаяся опциональным расширением протокола и позволяющая отправлять данные, когда TLS Handshake завершён лишь частично. Подробная схема TLS False Start представлена на рисунке:
Важно отметить, что TLS False Start никак не изменяет процедуру TLS Handshake. Он основан на предположении, что в тот момент, когда клиент и сервер уже знают о параметрах соединения и симметричных ключах, данные приложений уже могут быть отправлены, а все необходимые проверки можно провести параллельно. В результате соединение готово к использованию на одну итерацию обмена сообщениями раньше.
TLS Chain of trust
Пусть теперь Алиса получает сообщение от Чарли, с которым она не знакома, но который утверждает, что дружит с Бобом. Чтобы это доказать, Чарли заранее попросил подписать собственный открытый ключ закрытым ключом Боба, и прикрепляет эту подпись к сообщению Алисе. Алиса же сначала проверяет подпись Боба на ключе Чарли (это она в состоянии сделать, ведь открытый ключ Боба ей уже известен), убеждается, что Чарли действительно друг Боба, принимает его сообщение и выполняет уже известную проверку целостности, убеждаясь, что сообщение действительно от Чарли:
Описанное в предыдущем абзаце и есть создание «цепочки доверия» (или «Chain of trust», если по-английски).
В протоколе TLS данные цепи доверия основаны на сертификатах подлинности, предоставляемых специальными органами, называемыми центрами сертификации (CA – certificate authorities). Центры сертификации производят проверки и, если выданный сертификат скомпрометирован, то данный сертификат отзывается.
Из выданных сертификатов складывается уже рассмотренная цепочка доверия. Корнем её является так называемый “Root CA certificate” – сертификат, подписанный крупным центром, доверие к которому неоспоримо. В общем виде цепочка доверия выглядит примерно таким образом:
Естественно, возникают случаи, когда уже выданный сертификат необходимо отозвать или аннулировать (например, был скомпрометирован закрытый ключ сертификата, или была скомпрометирована вся процедура сертификации). Для этого сертификаты подлинности содержат специальные инструкции о проверке их актуальности. Следовательно, при построении цепочки доверия, необходимо проверять актуальность каждого доверительного узла.
Механизм этой проверки прост и в его основе лежит т.н. «Список отозванных сертификатов» (CRL – «Certificate Revocation List»). У каждого из центров сертификации имеется данный список, представляющий простой перечень серийных номеров отозванных сертификатов. Соответственно любой, кто хочет проверить подлинность сертификата, попросту загружает данный список и ищет в нём номер проверяемого сертификата. Если номер обнаружится – это значит, что сертификат отозван.
Таким образом, в данной статье рассмотрены все ключевые средства, предоставляемые протоколом TLS для защиты информации. За некоторую отсебятину в статье прошу прощения, это издержки изначальной цели выполнения перевода.
SSL-сертификаты бывают разные
Рассказываем, что такое цифровые сертификаты, какими они бывают и какие с ними связаны проблемы
Чем отличается защищенное соединение от незащищенного – знает довольно большое количество людей. А вот дальше довольно часто начинается темный лес: откуда берется сертификат, чем один сертификат отличается от другого, в чем разница между SSL и TLS и кто это вообще такие, какое отношение сертификат имеет к безопасности и так далее.
В рамках этого поста мы попробуем ответить хотя бы на часть этих и подобных вопросов, а начнем все-таки издалека – с того, что значат HTTP и HTTPS в адресной строке.
Что такое HTTP и HTTPS и чем они отличаются
Когда кто-нибудь из нас заходит на какой-нибудь сайт в Интернете, просто читает его или вводит на нем какие-то данные, происходит обмен информацией между нашим компьютером и сервером, на котором размещен сайт. Происходит он в соответствии с протоколом передачи данных — набором соглашений, определяющих порядок обмена информацией между разными программами.
Протокол, который используется для передачи данных в сети и получения информации с сайтов, называется HTTP (англ. HyperText Transfer Protocol — протокол передачи гипертекста). У него существует расширение, которое называется HTTPS (англ. HyperText Transfer Protocol Secure — безопасный протокол передачи гипертекста). Его суть — в том, что расширение позволяет передавать информацию между клиентом и сервером в зашифрованном виде. То есть информация, которой обмениваются клиент и сервер, доступна только этому клиенту и этому серверу, а не третьим лицам (например, провайдеру или администратору Wi-Fi-сети).
Шифрование данных, которые передаются от клиента к серверу, происходит, в свою очередь, в соответствии со своим, криптографическим протоколом. Сначала для этого использовался протокол под названием SSL (англ. Secure Sockets). У него было несколько версий, но все они в какой-то момент подвергались критике из-за наличия проблем с безопасностью. В итоге была выпущена та версия, которая используется сейчас — ее переименовали в TLS (англ. Transport Layer Security). Однако название SSL прижилось лучше, и новую версию протокола до сих пор часто называют так.
Для того чтобы использовать шифрование, у сайта должен быть специальный сертификат, или, как он еще называется, цифровая подпись, который подтверждает, что механизм шифрования действительно надежен и соответствует протоколу. Индикаторами того, что у сайта такой сертификат есть, являются, помимо буквы «S» в HTTPS, зеленый замочек и надпись «Защищено» или название компании в адресной строке браузера.
Как сайту получить SSL-сертификат
Существует два способа. Способ первый — веб-мастер может издать и подписать сертификат самостоятельно, сгенерировав криптографические ключи. Такой сертификат будет называться самоподписанным (англ. Self-Signed). В этом случае соединение с сайтом также будет зашифровано, но при попытке зайти на сайт с таким сертификатом пользователю будет показано предупреждение, что сертификат — недоверенный (неподтвержденный центром или устаревший). Обычно в окне браузер показывает перечеркнутый замочек и выделенные красным буквы HTTPS, или выделяет красным и перечеркивает буквы HTTPS в поисковой строке — зависит от браузера.
Второй способ (и единственный правильный) — приобрести сертификат, подписанный каким-либо из доверенных центров сертификации (Certificate authority). Сертификационные центры изучают документы владельца сайта и его право на владение доменом — ведь, по идее, наличие сертификата должно также гарантировать пользователю, что ресурс, с которым он обменивается информацией, принадлежит реальной легитимной компании, зарегистрированной в определенном регионе.
Сертификационных центров существует довольно много, но авторитетные среди них можно пересчитать по пальцам. От репутации центра зависит то, насколько ему будут доверять компании-разработчики браузеров и как они будут отображать сайт с таким сертификатом. От вида сертификата, срока его действия и репутации центра и зависит цена на сертификат.
Какими бывают SSL-сертификаты
Сертификаты, подписанные центрами, делятся на несколько видов — в зависимости от уровня надежности, того, кто и как их может получить и, соответственно, цены.
Первый называется DV (англ. Domain Validation — проверка домена). Для его получения физическому или юридическому лицу нужно доказать, что они имеют некий контроль над доменом, для которого приобретается сертификат. Проще говоря, что они либо владеют доменом, либо администрируют сайт на нем. Этот сертификат позволяет установить защищенное соединение, но в нем нет данных об организации, которой он выдан, а для его оформления не требуется никаких документов. Процесс получения такого сертификата обычно занимает несколько минут.
Сертификаты более высокого уровня — OV (англ. Organization Validation — проверка организации). Такие сертификаты выдаются только юридическим лицам, и от них требуются документы, подтверждающие существование организации, — так подтверждается не только безопасность соединения с доменом, но и то, что домен принадлежит организации, указанной в электронном сертификате. Оформление может занимать несколько дней, пока проверяются все документы. Наличие DV или OV-сертификата у сайта в браузере отображается серым или зеленым замочком, словом Secure и буквами HTTPS в адресной строке.
И еще есть EV (англ. Extended Validation — расширенная проверка) — сертификаты самого высокого уровня. Такой сертификат также могут получить только юридические лица, предоставившие все необходимые документы, а отличительной особенностью является то, что название и локация организации отображаются зеленой надписью в адресной строке после зеленого замочка. Такие сертификаты пользуются наибольшим доверием у браузеров, но они и дороже всего. В основном их приобретают крупные компании. Даже банки часто приобретают их в основном не для основного сайта, а отдельно для домена своего сервиса онлайн-платежей.
Информацию о сертификате (кем выдан, когда и сколько действует) можно посмотреть, кликнув на название организации или надпись Secure — правда, это можно сделать не во всех браузерах.
Что может быть не так с сертификатами
Один из принципов, по которым основные разработчики браузеров, такие как Google и Mozilla, выстраивают свою политику — безопасность Интернета и пользовательских данных в нем. В этой связи осенью 2017 года Google анонсировала, что отныне будет маркировать все страницы, использующие HTTP-соединение, как «незащищенные», и, по сути, блокировать пользователям доступ к ним.
Фактически, это условие вынудило все сайты на HTTP в ускоренном темпе приобретать доверенные сертификаты. Соответственно, спрос на услуги сертификационных центров вырос в разы, а время на проверку документов последним, естественно, хотелось бы сократить, чтобы выдать как можно больше этих самых сертификатов. Поэтому многие из центров стали проводить проверку гораздо менее тщательно.
Результатом этого становится то, что надежные сертификаты получают далеко не самые надежные сайты. Так, Google провела расследование, по результатам которого выяснилось, что один из самых крупных и авторитетных центров выдал более 30 тыс. сертификатов, не осуществив при этом должной проверки. Последствия для центра не радужные: Google заявила, что перестанет считать доверенными все сертификаты, выданные центром, пока тот полностью не переделает всю систему проверки и не установит новые стандарты. Mozilla также планирует ужесточить верификацию сертификатов в своих браузерах и тем самым повлиять на требования к их выдаче.
Тем не менее пока полностью уверенным в надежности сертификата и получившей его организации быть нельзя. Даже если это EV-сертификат, внешне соответствующий всем требованиям безопасности, не стоит доверять тому, что написано зеленым шрифтом, безоговорочно.
С EV-сертификатами все даже особенно плохо: злоумышленник может зарегистрировать компанию с названием, подозрительно похожим на название какой-нибудь известной компании и получить для своего сайта EV-сертификат. В этом случае зелеными буквами в адресной строке будет написано как раз-таки название компании (очень похожее на название другой известной компании), что позволит злоумышленнику повысить доверие пользователя к фишинговому сайту. Поэтому никогда не забывайте об осторожности и соблюдении правил при использовании любой веб-страницы.