Что такое tcp udp
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
TCP и UDP – в чем разница?
Напомним немного про OSI
Современный мир немыслим без средств связи. Десятки миллионов устройств по всему миру связываются посредством компьютерных сетей. И каждая компьютерная сеть организована по определенным стандартам. Любые устройства взаимодействуют по общепринятой модели OSI, или Базовой Эталонной Модели Взаимодействия Открытых Систем. Данная модель определяет взаимодействие различных сетевых устройств на семи уровнях – Media (к ним относятся физический, канальный и сетевой) и Host – (транспортный, сеансовый, представления и прикладной). В данной статье мы рассмотрим два самых распространенных сетевых протокола транспортного уровня – TCP и UDP, примеры их применения, а также сравним их характеристики.
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer
Видео: TCP и UDP | что это такое и в чем разница?
В чем же разница TCP и UDP?
Вообще, протоколы транспортного уровня широко применяются в современных сетях. Именно они позволяют гарантировать доставку сообщения до адресата, а также сохраняют правильную последовательность передачи данных. При этом протоколы имеют ряд различий, что позволяет использовать их профильно, для решения своих задач каждый.
Протокол TCP (Transmission Control Protocol) – это сетевой протокол, который «заточен» под соединение. Иными словами, прежде, чем начать обмен данными, данному протоколу требуется установить соединение между двумя хостами. Данный протокол имеет высокую надежность, поскольку позволяет не терять данные при передаче, запрашивает подтверждения о получении от принимающей стороны и в случае необходимости отправляет данные повторно. При этом отправляемые пакеты данных сохраняют порядок отправки, то есть можно сказать, что передача данных упорядочена. Минусом данного протокола является относительно низкая скорость передачи данных, за счет того что выполнение надежной и упорядоченной передачи занимает больше времени, чем в альтернативном протоколе UDP.
Протокол UDP (User Datagram Protocol), в свою очередь, более прост. Для передачи данных ему не обязательно устанавливать соединение между отправителем и получателем. Информация передается без предварительной проверки готовности принимающей стороны. Это делает протокол менее надежным – при передаче некоторые фрагменты данных могут теряться. Кроме того, упорядоченность данных не соблюдается – возможен непоследовательный прием данных получателем. Зато скорость передачи данных по данному транспортному протоколу будет более высокой.
Заключение и наглядное сравнение
Приведем несколько основных пунктов:
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer
Обмен данными между устройствами, подключенными к всемирной паутине, осуществляется с помощью набора протоколов TCP/IP. Этот стек использует разный перечень протоколов, включая UDP и TCP. Специалисты, ответственные за разработку и наладку частных/корпоративных сетей, досконально понимают разницу между ними, но с точки зрения простого пользователя назначение этих протоколов, а также разница между ними, вызывает целый ряд вопросов.
Протоколы UDP и TCP – в чем разница?
Несмотря на то, что протоколы UDP и TCP ориентированы на выполнение одной задачи – передачу данных, между ними существует ряд принципиальных отличий.
Что такое TCP?
TCP-протокол – это виртуальный канал, сформированный между двумя или более узлами. Его работоспособность становится возможной, если заранее установить соединение – в противном случае передача информационных пакетов будет невозможной. С помощью протокола TCP реализуется надежная передача большого объема данных к разнообразным пользовательским устройствам.
Чтобы обеспечить надежное соединение, протокол TCP предусматривает трехэтапный запуск сеанса связи. Клиент и сервер должны передавать значения ISN и порта. Еще одна отличительная особенность протокола TCP заключается в использовании контрольной суммы, с помощью которой система проверяет, правильно ли передана информация конечному пользователю.
Приложения для TCP
Протокол TCP используют следующие приложения:
Из этого следует, что протокол TCP пользуется популярностью среди приложений, работающих с массивом данных, разрыв которых нужно полностью исключить. Программы для загрузки файлов, отправки сообщений – это лишь малая часть программного обеспечения, построенного на базе протокола TCP.
UDP протокол — что это такое?
В рамках протокола UDP данные передаются между узлами с помощью специальных пакетов данных, не требующих проверки. При этом гарантии их получения не требуется. Данная технология не предусматривает удаление дубликатов пакетов, мониторинг и контроль их текущего расположения.
С одной стороны, специалисты в области компьютерных сетей вполне заслуженно считают UDP ненадежным протоколом. С другой, это не просто важное, а незаменимое решение для приложений, работающих в режиме реального времени, интернет-телевидения, технологии VOIP, игр по сети и так далее. Благодаря возможностям протокола UDP пропадает необходимость проводить первичную проверку соединения, соблюдения целостности и порядка структуры данных. Если какая-либо датаграмма (пакет без проверки) потеряется, происходит ее автоматический сброс. Это положительно сказывается на скорости передачи данных через сеть интернет.
Приложения для UDP
Протокол UDP незаменим для приложений, с помощью которых происходит передача мультимедийной информации, включая интернет-телевидение, интернет-телефонию и так далее. Некоторое количество данных все же может быть потеряно, но это будет сложно заметить на практике. Яркий пример – изменение качества видеоряда и звука в худшую сторону. Вот почему популярные специализированные программы заранее предлагают своим пользователям выбрать оптимальное разрешение.
Применение TCP
Из сказанного выше следует, что TCP – это протокол повышенной сложности, работа которого сопровождается большими тратами времени. Причиной этого является механизм синхронизации между узлами. При этом основное преимущество данного протокола заключается в гарантии доставки пакетов, благодаря чему эта функциональность не включается в структуру прикладного протокола.
Кроме того, применение протокола TCP является гарантией надежности доставки. В случае некорректной отправки сообщения пользователь всегда получит соответствующее уведомление в виде окна с информацией о возникшей ошибке.
Применение UDP
UDP, в свою очередь, является протоколом, обладающим высокой скоростью передачи данных. Все дело в том, что в его основу заложен минималистичный механизм, без которого не обходится ни одна передача данных. Естественно, для него характерен целый ряд недостатков. Поступление передаваемых данных происходит в хаотичном порядке – не факт, что первый пакет из общего списка не окажется последним.
Гарантии доставки передаваемой информации нет, поэтому не исключено, что в ответ пользователь получит один пакет в виде двух копий. Возникновение подобной ситуации возможно в том случае, если один адрес для отправки сопровождается двумя разными маршрутами.
Выводы
UDP – протокол, который обеспечивает высокую скорость отправки пакетов данных, но без гарантии их доставки. Если для конечного пользователя важна надежность доставки с сохранением порядка отправки данных, придется переходить на использование протокола TCP. Применение протокола UDP актуально, если проводится групповая и широковещательная передача данных. Вот почему он пользуется большой популярностью в области потокового интернет-видео, а также в игровой индустрии.
Пожалуйста, оставляйте свои мнения по текущей теме материала. Мы очень благодарим вас за ваши комментарии, дизлайки, отклики, подписки, лайки!
Пожалуйста, опубликуйте ваши комментарии по текущей теме статьи. За комментарии, подписки, дизлайки, отклики, лайки огромное вам спасибо!
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Нужно знать: про TCP и UDP
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
UDP предоставляет приложениям сервис для обмена сообщениями. В отличие от TCP, UDP не требует установления соединения и не обеспечивает надежности, работы с окнами, переупорядочивания полученных данных и сегментации больших фрагментов данных на нужный размер для передачи. Однако UDP предоставляет некоторые функции TCP, такие как передача данных и мультиплексирование с использованием номеров портов, и делает это с меньшим объемом служебных данных и меньшими затратами на обработку, чем TCP.
Передача данных UDP отличается от передачи данных TCP тем, что не выполняется переупорядочевание или восстановление. Приложения, использующие UDP, толерантны к потерянным данным, или у них есть какой-то прикладной механизм для восстановления потерянных данных. Например, VoIP использует UDP, потому что, если голосовой пакет потерян, к тому времени, когда потеря может быть замечена и пакет будет повторно передан, произойдет слишком большая задержка, и голос будет неразборчивым. Кроме того, запросы DNS используют UDP, потому что пользователь будет повторять операцию, если разрешение DNS не удается. В качестве другого примера, сетевая файловая система (NFS), приложение удаленной файловой системы, выполняет восстановление с помощью кода уровня приложения, поэтому функции UDP приемлемы для NFS.
На рисунке 10 показан формат заголовка UDP. Самое главное, обратите внимание, что заголовок включает поля порта источника и назначения для той же цели, что и TCP. Однако UDP имеет только 8 байтов по сравнению с 20-байтовым заголовком TCP, показанным на рисунке 1-1. UDP требует более короткого заголовка, чем TCP, просто потому, что у UDP меньше работы.
Приложения TCP / IP
Всемирная паутина (WWW) состоит из всех подключенных к Интернету веб-серверов в мире, а также всех подключенных к Интернету хостов с веб-браузерами. Веб-серверы, которые состоят из программного обеспечения веб-сервера, запущенного на компьютере, хранят информацию (в виде веб-страниц), которая может быть полезна для разных людей. Веб-браузер, представляющий собой программное обеспечение, установленное на компьютере конечного пользователя, предоставляет средства для подключения к веб-серверу и отображения веб-страниц, хранящихся на веб-сервере. Хотя большинство людей используют термин «веб-браузер» или просто «браузер«, веб-браузеры также называются веб-клиентами, потому что они получают услугу с веб-сервера.
Чтобы этот процесс работал, необходимо выполнить несколько определенных функций прикладного уровня. Пользователь должен каким-то образом идентифицировать сервер, конкретную веб-страницу и протокол, используемый для получения данных с сервера. Клиент должен найти IP-адрес сервера на основе имени сервера, обычно используя DNS. Клиент должен запросить веб-страницу, которая на самом деле состоит из нескольких отдельных файлов, а сервер должен отправить файлы в веб-браузер. Наконец, для приложений электронной коммерции (электронной коммерции) передача данных, особенно конфиденциальных финансовых данных, должна быть безопасной. В следующих подразделах рассматривается каждая из этих функций.
Унифицированные идентификаторы ресурсов
Чтобы браузер отображал веб-страницу, он должен идентифицировать сервер, на котором находится эта веб-страница, а также другую информацию, которая идентифицирует конкретную веб-страницу. Большинство веб-серверов имеют множество веб-страниц. Например, если вы используете веб-браузер для просмотра www.cisco.com и щелкаете по этой веб-странице, вы увидите другую веб-страницу. Щелкните еще раз, и вы увидите другую веб-страницу. В каждом случае щелчок идентифицирует IP-адрес сервера, а также конкретную веб-страницу, при этом детали в основном скрыты от вас. (Эти интерактивные элементы на веб-странице, которые, в свою очередь, переводят вас на другую веб-страницу, называются ссылками.)
Большинство браузеров поддерживают какой-либо способ просмотра скрытого URI, на который ссылается ссылка. В некоторых браузерах наведите указатель мыши на ссылку, щелкните правой кнопкой мыши и выберите «Свойства». Во всплывающем окне должен отображаться URI, на который будет направлен браузер, если вы нажмете эту ссылку.
В просторечии многие люди используют термины веб-адрес или аналогичные связанные термины Universal Resource Locator (или Uniform Resource Locator [URL]) вместо URI, но URI действительно является правильным формальным термином. Фактически, URL-адрес используется чаще, чем URI, уже много лет. Однако IETF (группа, определяющая TCP / IP) вместе с консорциумом W3C (W3.org, консорциум, разрабатывающий веб-стандарты) предприняли согласованные усилия по стандартизации использования URI в качестве общего термина.
С практической точки зрения, URI, используемые для подключения к веб-серверу, включают три ключевых компонента, как показано на рисунке 11. На рисунке показаны формальные имена полей URI. Что еще более важно для понимания, обратите внимание, что текст перед :// определяет протокол, используемый для подключения к серверу, текст между // и / идентифицирует сервер по имени, а текст после / идентифицирует веб-страницу.
Поиск веб-сервера с помощью DNS
Чтобы собрать воедино несколько концепций, на рисунке 12 показан процесс DNS, инициированный веб-браузером, а также некоторая другая связанная информация. С базовой точки зрения пользователь вводит URI (в данном случае http://www.exempel.com/go/learningnetwork), преобразует имя www.exempel.com в правильный IP-адрес и начинает отправлять пакеты на веб сервер.
Шаги, показанные на рисунке, следующие:
Пример на рисунке 12 показывает, что происходит, когда клиентский хост не знает IP-адрес, связанный с именем хоста, но предприятие знает адрес. Однако хосты могут кэшировать результаты DNS-запросов, так что какое-то время клиенту не нужно запрашивать DNS для разрешения имени. Также DNS-сервер может кэшировать результаты предыдущих DNS-запросов; например, корпоративный DNS-сервер на рисунке 12 обычно не имеет настроенной информации об именах хостов в доменах за пределами этого предприятия, поэтому в этом примере DNS-сервер кэшировал адрес, связанный с именем хоста www.example.com.
Когда локальный DNS не знает адрес, связанный с именем хоста, ему необходимо обратиться за помощью. На рисунке 13 показан пример с тем же клиентом, что и на рисунке 12. В этом случае корпоративный DNS действует как рекурсивный DNS-сервер, отправляя повторяющиеся DNS-сообщения, чтобы идентифицировать авторитетный DNS-сервер.
Шаги, показанные на рисунке, следующие:
Передача файлов по HTTP
После того, как веб-клиент (браузер) создал TCP-соединение с веб-сервером, клиент может начать запрашивать веб-страницу с сервера. Чаще всего для передачи веб-страницы используется протокол HTTP. Протокол прикладного уровня HTTP, определенный в RFC 7230, определяет, как файлы могут передаваться между двумя компьютерами. HTTP был специально создан для передачи файлов между веб-серверами и веб-клиентами.
HTTP определяет несколько команд и ответов, из которых наиболее часто используется запрос HTTP GET. Чтобы получить файл с веб-сервера, клиент отправляет на сервер HTTP-запрос GET с указанием имени файла. Если сервер решает отправить файл, он отправляет ответ HTTP GET с кодом возврата 200 (что означает ОК) вместе с содержимым файла.
Для HTTP-запросов существует множество кодов возврата. Например, если на сервере нет запрошенного файла, он выдает код возврата 404, что означает «файл не найден». Большинство веб-браузеров не показывают конкретные числовые коды возврата HTTP, вместо этого отображая ответ, такой как «страница не найдена», в ответ на получение кода возврата 404.
Веб-страницы обычно состоят из нескольких файлов, называемых объектами. Большинство веб-страниц содержат текст, а также несколько графических изображений, анимированную рекламу и, возможно, видео и звук. Каждый из этих компонентов хранится как отдельный объект (файл) на веб-сервере. Чтобы получить их все, веб-браузер получает первый файл. Этот файл может (и обычно делает) включать ссылки на другие URI, поэтому браузер затем также запрашивает другие объекты. На рисунке 14 показана общая идея, когда браузер получает первый файл, а затем два других.
Как принимающий хост определяет правильное принимающее приложение
Эта лекция завершается обсуждением процесса, с помощью которого хост при получении любого сообщения по любой сети может решить, какая из множества своих прикладных программ должна обрабатывать полученные данные.
В качестве примера рассмотрим хост A, показанный слева на рисунке 15. На хосте открыто три разных окна веб-браузера, каждое из которых использует уникальный TCP-порт. На хосте A также открыт почтовый клиент и окно чата, оба из которых используют TCP. И электронная почта, и чат-приложения используют уникальный номер TCP-порта на хосте A, как показано на рисунке.
В этой части лекции показано несколько примеров того, как протоколы транспортного уровня используют поле номера порта назначения в заголовке TCP или UDP для идентификации принимающего приложения. Например, если значение TCP-порта назначения на рисунке 15 равно 49124, хост A будет знать, что данные предназначены для первого из трех окон веб-браузера.
Прежде чем принимающий хост сможет проверить заголовок TCP или UDP и найти поле порта назначения, он должен сначала обработать внешние заголовки в сообщении. Если входящее сообщение представляет собой кадр Ethernet, который инкапсулирует пакет IPv4, заголовки выглядят так, как показано на рисунке 16.
Заголовок IPv4 имеет аналогичное поле, называемое полем протокола IP. Поле протокола IPv4 имеет стандартный список значений, которые идентифицируют следующий заголовок, с десятичным числом 6, используемым для TCP, и десятичным числом 17, используемым для UDP. В этом случае значение 6 определяет заголовок TCP, следующий за заголовком IPv4. Как только принимающий хост понимает, что заголовок TCP существует, он может обработать поле порта назначения, чтобы определить, какой процесс локального приложения должен получить данные.
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
TCP против UDP: особенности, использование и отличия
Протокол TCP: что это и как работает?
TCP (протокол управления передачей) Протокол является одним из основных протоколов в Интернете, он позволяет приложениям взаимодействовать с гарантиями независимо от нижних уровней модели TCP / IP. Это означает, что маршрутизаторы (сетевой уровень в модели TCP / IP) должны только отправлять сегменты (единицы измерения в TCP), не беспокоясь о том, будут ли эти данные поступать правильно. TCP поддерживает несколько протоколов уровня приложений такие как HTTP (Интернет), HTTPS (защищенный Интернет), POP3 (входящая почта) и SMTP (исходящая почта), а также их безопасные версии с использованием TLS. TCP также используется в таких важных протоколах, как FTP, FTPES и SFTP для передачи файлов из источника в место назначения, и даже протокол SSH для локального и удаленного безопасного управления компьютерами использует протокол TCP.
основные черты
Поскольку TCP обслуживает большое количество протоколов прикладного уровня, он важно, чтобы данные (сегменты) доходили до получателя правильно без ошибок и по порядку. Если при передаче сегментов они повреждены или утеряны, автоматически TCP протокол начинается ретрансляция без вмешательства прикладного уровня. Таким образом, гарантируется, что данные достигают получателя без ошибок, так как этот протокол отвечает за решение любого типа проблемы.
TCP имеет сложный механизм контроля ошибок используется техника скользящего окна, чтобы все сегменты приходили правильно. Эта функция использует различные методы для обнаружения возможных ошибок:
Конечно, если TCP обнаружит ошибку, он автоматически начнет повторную передачу, при этом прикладному уровню вообще не придется ничего делать.
Протокол TCP позволяет управление потоком то есть он способен смягчить возможное насыщение сети или удаленного хоста. Если устройство передает данные со скоростью 500 Мбит / с, а устройство-адресат может получать информацию только со скоростью 100 Мбит / с, протокол TCP динамически адаптируется. Таким образом, протокол TCP всегда будет пытаться максимизировать доступную пропускную способность между источником и назначением. Работа этого скользящего окна сложна, но в основном он работает в том, что у получателя есть доступное окно TCP с количеством байтов, которые могут быть сохранены в буфере, отправитель может отправлять данные до тех пор, пока это количество не будет заполнено. Для того чтобы отправитель отправил больше данных, получателю необходимо отправить ACK, указывающий, что все правильно и что он продолжает «загружать» его на прикладной уровень.
Чтобы избежать перегрузки и того, что мы можем сжать максимальную доступную полосу пропускания между отправителем и пунктом назначения, существует всего три этапа. медленный старт Фаза (медленный старт) отвечает за экспоненциальный рост (поэтому его нельзя считать медленным стартом) окна перегрузки, затем перегрузки уклонение фаза, которая отвечает за линейное увеличение окна заторов, и, наконец, постоянная фаза где окно приема такое же, как окно перегрузки.
TCP в настоящее время имеет различные алгоритмы для эффективного управления перегрузкой, первыми были TCP Tahoe и Reno, хотя у нас также есть другие, такие как TCP Vegas, но с годами, благодаря новым сетям передачи данных TCP / IP, у них появились другие алгоритмы, которые более эффективным. Например, у нас есть TCP BRR что позволяет нам отправлять информацию как можно быстрее, поскольку он намного эффективнее исходного протокола TCP (у нас будет большая скорость). У нас также есть TCP Cubic, который является средством контроля перегрузки, используемым Linux и операционные системы Unix.
Установление соединения между клиентом и сервером и отключение в TCP
Основной характеристикой протокола TCP является то, что это протокол, ориентированный на соединение Чтобы установить соединение между клиентом и сервером, абсолютно необходимо установить предыдущее соединение с указанным сервером.
Одна из уязвимостей TCP заключается в отправке большого количества сегментов TCP SYN с целью «насыщения» подключений к получателю. Вот некоторые возможные решения для смягчения атаки типа «отказ в обслуживании»:
Заголовок TCP
TCP добавляет как минимум 20 байтов заголовка в каждом сегменте, так как у нас есть «необязательное» поле. В этом заголовке TCP мы найдем порт источника и порт назначения соединения (сокета), мы также найдем порядковый номер, номер ACK и различные флаги TCP, такие как SYN, ACK, RST, FIN, URG и другие. В этом заголовке у нас также есть очень важная часть для работы со скользящим окном, и у нас будет 16-битное поле, которое указывает размер окна приема, которое мы объяснили ранее.
порты (исходный порт и порт назначения) необходимы для правильного функционирования TCP. TCP использует эти номера портов для идентификации сокета, то есть приложения, которое отправляет данные или получает данные. Порты TCP варьируются от 0 до 65535, но у нас есть три различных типа портов:
Протокол UDP: что это и как работает?
Протокол UDP (протокол пользовательских дейтаграмм) является одним из основных протоколов в Интернете, он позволяет приложениям обмениваться данными с гарантиями независимо от нижних уровней модели TCP / IP. Это означает, что маршрутизаторы (сетевой уровень в модели TCP / IP) должны отправлять только дейтаграммы (единица измерения в UDP). UDP поддерживает несколько протоколов прикладного уровня, например, популярный DNS и даже протокол DHCP для автоматического получения (и предоставления) IP-адресации.
основные черты
Этот протокол не обеспечивает какого-либо типа управления потоком Если одно устройство быстрее другого и отправляет информацию, вполне возможно, что информация будет потеряна, поскольку она будет разрушаться при самой низкой скорости, и нам придется перейти к пересылке информации. Важной деталью является то, что управление пересылкой дейтаграмм осуществляется транспортным уровнем, поскольку UDP очень прост и не имеет механизмов управления для пересылки дейтаграмм, поскольку он был потерян.
UDP также не обеспечивает любой тип контроля скопление если в сети есть перегрузка, пакеты могут быть потеряны, и, конечно, он не будет отвечать за их повторную отправку, как это происходит с TCP. Следовательно, UDP не имеет контроля перегрузки, контроля потока или контроля ошибок, можно сказать, что UDP является ненадежным протоколом. Кроме того, он не предоставляет порядок в отправленных дейтаграммах и информацию о том, правильно ли поступила дейтаграмма, поскольку нет подтверждения доставки или получения. Любой тип гарантий передачи информации должен быть реализован на более высоких уровнях.
Этот протокол в основном используется в DHCP и DNS, где скорость важнее надежности. UDP широко используется в задачах управления передачей аудио и видео по сети. UDP только добавляет мультиплексирование приложения и добавление контрольной суммы в заголовок и полезную нагрузку.
Заголовок UDP
UDP добавляет 8-байтовый заголовок в каждой дейтаграмме. В этом заголовке UDP мы найдем порт источника и порт назначения соединения (сокета), длину дейтаграммы и контрольную сумму упомянутой дейтаграммы, чтобы убедиться, что в ней нет ошибок ни заголовка, ни данных дейтаграммы. порты (исходный порт и порт назначения) необходимы для правильного функционирования UDP. UDP использует эти номера портов для идентификации сокета, то есть приложения, которое передает данные или получает данные.
TCP против UDP в различных протоколах VPN, таких как OpenVPN
OpenVPN позволяет использовать протокол TCP и UDP для туннеля данных, как вы видели, TCP и UDP сильно различаются, и всегда рекомендуется использовать TCP, так как он имеет управление потоком, контроль перегрузки, контроль ошибок и многие другие функции, которые делают соединение надежным. Если вы собираетесь использовать OpenVPN, по умолчанию используется UDP, это связано с тем, что, если есть какие-либо проблемы, протоколы прикладного уровня, такие как HTTP (который использует TCP ниже), будут отвечать за выполнение повторных передач, если это было необходимо, поэтому соединение будет надежным (управление потоком, перегрузка, ошибки и т. д.), даже если зашифрованный туннель точка-точка использует UDP.
Очень важный аспект заключается в том, что сервер OpenVPN с UDP будет способен принимать больше входящих соединений одновременно, если вы используете UDP, чем если вы используете TCP, кроме того, у нас также будет большая пропускная способность, так как дополнительная «загрузка» не добавляется потому что UDP намного «легче».
Как вы видели, как TCP, так и UDP являются двумя основными интернет-протоколами, и каждый из них обрабатывает разные протоколы прикладного уровня.