Что такое sном в электротехнике
номинальная мощность Sном
номинальная мощность Sном
Полная мощность, определяющая вместе с номинальным напряжением номинальный ток обмотки.
Примечания
1 В двухобмоточном трансформаторе обе обмотки имеют одинаковую номинальную мощность, равную номинальной мощности трансформатора.
2 Для многообмоточного трансформатора половина суммы значений номинальных мощностей всех обмоток (раздельных обмоток без автотрансформаторного соединения) дает приблизительную оценку габаритных размеров многообмоточного трансформатора по сравнению с двухобмоточным трансформатором.
[ГОСТ 30830-2002]
rated power
a conventional value of apparent power, establishing a basis for the design of a transformer, a shunt reactor or an arc-suppression coil, the manufacturer’s guarantees and the tests, determining a value of the rated current that may be carried with rated voltage applied, under specified conditions
NOTE – Both windings of a two-winding transformer have the same rated power, which by definition is the rated power of the transformer. For multi-winding transformers the rated power for each of the windings may diffe
[IEV number 421-04-04]
puissance assignée
valeur conventionnelle de la puissance apparente, destinée à servir de base à la conception du transformateur, de la bobine d’inductance shunt ou de la bobine d’extinction d’arc, aux garanties du constructeur et aux essais, en déterminant une valeur de courant assigné admissible lorsque la tension assignée est appliquée, dans des conditions spécifiées
NOTE – Les deux enroulements d’un transformateur à deux enroulements ont la même puissance assignée, qui est par définition la puissance assignée du transformateur. Dans le cas de transformateurs à plus de deux enroulements, la puissance assignée de chacun des enroulements peut être différente
[IEV number 421-04-04]
номинальный ток Iном
номинальный ток Iном
Ток, протекающий через линейный вывод обмотки и определяемый номинальной мощностью Sном, В·А, и номинальным напряжением Uном, В, обмотки
(МЭС 421-04-05).
Примечания
1 Для трехфазной обмотки номинальный ток Iном, А, определяют по формуле
Iном = Sном / √3Uном
2 Для однофазных трансформаторов, предназначенных для соединения в трехфазную группу, номинальный ток обмотки, соединяемой в треугольник, определяют как линейный ток Iл, А, по формуле
Iном = Iл / √3
rated current (of a winding of a transformer or shunt reactor)
the current, flowing through a line terminal of a winding, derived by dividing the rated power of the winding by the rated voltage of the winding and by an appropriate phase factor
[IEV number 421-04-05]
courant assigné (d’un enroulement de transformateur ou d’une bobine d’inductance shunt)
courant arrivant à une borne de ligne d’un enroulement, obtenu en divisant la puissance assignée de l’enroulement par la tension assignée de cet enroulement et par un facteur de phase approprié
[IEV number 421-04-05]
Тематики
Классификация
Полезное
Смотреть что такое «номинальный ток Iном» в других словарях:
номинальный ток Iном — 57 номинальный ток Iном: Ток, для которого предназначена или определена система электроснабжения (электрическая сеть) de. Nominellen Strom en. Rated current fr. Courant nominal Источник: ГОСТ Р 54130 2010: Качество электрической энергии. Термины… … Словарь-справочник терминов нормативно-технической документации
номинальный ток Iном, А — 3.57 номинальный ток Iном, А: Ток, который главная цепь разъединителя способна длительно пропускать в нормированных условиях эксплуатации. Источник: ГОСТ Р 52726 2007: Разъед … Словарь-справочник терминов нормативно-технической документации
номинальный ток — 3.18 номинальный ток (rated current): Ток, установленный для выключателя изготовителем. Источник: ГОСТ Р 51324.1 2005: Выключатели для бы … Словарь-справочник терминов нормативно-технической документации
номинальный ток выключателя — Iном Наибольший допустимый по условиям нагрева частей выключателя ток нагрузки в продолжительном режиме, на который рассчитан выключатель [ГОСТ Р 52565 2006] Тематики выключатель, переключатель … Справочник технического переводчика
номинальный ток пьезоэлектрического (электромеханического) фильтра — (Iном, Inom) Значение входного тока, при котором измеряют параметры пьезоэлектрического (электромеханического) фильтра. [ГОСТ 18670 84] Тематики электрические фильтры EN nominal current FR courant nominal … Справочник технического переводчика
номинальный — 3.7 номинальный: Слово, используемое проектировщиком или производителем в таких словосочетаниях, как номинальная мощность, номинальное давление, номинальная температура и номинальная скорость. Примечание Следует избегать использования этого слова … Словарь-справочник терминов нормативно-технической документации
Номинальный рабочий ток — 2. Номинальный рабочий ток По ГОСТ 12434 Источник: ГОСТ 11206 77: Контакторы электромагнитные низковольтные. Общие технические условия … Словарь-справочник терминов нормативно-технической документации
номинальный рабочий ток пускателя (Iном) — 3.3 номинальный рабочий ток пускателя (Iном) : Ток, на который рассчитана длительная работа токоведущих элементов главной цепи. Источник: ГОСТ Р 52275 2004: Пускатели электромагнитные рудничные взрывоз … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 52726-2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия — Терминология ГОСТ Р 52726 2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия оригинал документа: 3.1 IP код: Система кодирования, характеризующая степени защиты, обеспечиваемые… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации
Силовой трансформатор: формулы для определения мощности, тока, uk%
Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.
Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.
Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.
Значения в скобках принимаются для экспортных или специальных трансформаторов.
Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.
К силовым трансформаторам относятся:
Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи
Взято из ГОСТ 16110
Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:
Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.
Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:
В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.
Формулы для расчета относительных сопротивлений обмоток (xT%)
В двухобмоточном трансформаторе все просто и uk=xt.
Трехобмоточный и автотрансформаторы
В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).
Трехфазный у которого НН расщепленная
Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.
В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.
Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви
Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.
Основные понятия электротехники, термины и определения
Рассмотрены самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.
1. Электрический ток
Движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.
К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.
Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов.
В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых «дырок». Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.
По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.
Наличие тока можно обнаружить по тем эффектам, которые он вызывает. Три эффекта сопровождают электрический ток:
в среде, окружающей провода с током, наблюдается магнитное поле;
проводник, по которому течет ток, нагревается;
в проводниках с ионной проводимостью при электрическом токе наблюдается перенос вещества.
За направление электрического тока принимается направление движения ионов металла (т. е. положительных зарядов) при электролизе растворов солей. Направление перемещения электронов в металлических проводниках противоположно вышеуказанному направлению (они перемещаются от отрицательного полюса источника к положительному).
Единицей электрического тока является 1 ампер (1 А). Эта единица выбрана в качестве основной при записи закона электродинамического силового взаимодействия проводников, что устанавливает ее связь с основными механическими единицами.
Сила, вызывающая движение электронов в проводнике (ток), распространяется со скоростью света. Однако сами электроны движутся в проводнике со скоростями всего порядка 1 мм/с.
Подробно про электрический ток:
2. Контур электрического тока
В электрической цепи электрический ток циркулирует по замкнутому контуру. От источника ток течет по проводу через выключатель к приемнику, где он и производит желаемый эффект.
По второму проводу ток возвращается к источнику, проходит через него и снова начинает свой путь. На этом пути электрический ток черпает энергию для своего движения в источнике, а затем отдает ее приемнику обычно путем ее перехода в энергию другого вида — световую, тепловую, механическую и т.д.
В природе и технике встречается много подобных циклических процессов. Например, хорошую, но, конечно, формальную аналогию можно усмотреть в случае движения воды в системе охлаждения автомобиля. Вода получает тепловую энергию от стенок цилиндров двигателя внутреннего сгорания.
Даже без водяного насоса возникает движение воды по трубопроводам системы охлаждения и вода отдает большую часть полученной тепловой энергии в радиаторе, являющемся в данном случае приемником энергии.
Согласно современным представлениям электрический ток в проводниках образуется очень большим количеством мельчайших носителей заряда, называемых электронами. Электрический заряд следует рассматривать как одну из основных характеристик частиц и тел, которая проявляет себя в различного рода силовых взаимодействиях.
3. Электродвижущая сила, напряжение
Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС). Источники электрической энергии называются источниками ЭДС.
На участке электрической цепи, где заряды отдают энергию, имеет место так называемое падение напряжения. Падение напряжения на участках цепи — приемниках называют короче просто напряжением.
Исходящий от источника ЭДС «импульс напряжения» распространяется со скоростью света, в то время как сами электроны движутся с очень малыми скоростями.
Электрический ток в простой электрической цепи одинаков на всех ее участках, и вследствие высокой скорости распространения импульса напряжения все электроны приходят в движение практически одновременно.
В случае разомкнутой цепи с источником ЭДС направленного движения потока электронов в ней быть не может. Однако в этой цепи свободные электроны находятся в состоянии постоянной готовности к движению, как только электрическая цепь будет замкнута. В таком случае принято говорить, что оба конца разомкнутой цепи находятся под напряжением.
Направления ЭДС Е и падения напряжения U совпадают с направлением тока, т. е. противоположны направлению движения электронов.
Единицей ЭДС и напряжения является 1 вольт (1В).
Для напряжения выбран ряд стандартизованных значений, чтобы установить единство в снабжении потребителей электрической энергией.
Для потребителей малой мощности применяются главным образом напряжения 12, 24, 36, 48, 110, 220 В. Для промышленных сетей низкого напряжения и бытовых сетей установлены напряжения 220 и 380 В. Для передачи электроэнергии на дальние расстояния применяются высокие напряжения 6000, 10000, 35000, 110000, 220000, 330000, 500000 и 750000 В.
Подробнее про электродвижущую силу и напряжение:
4. Электрическое сопротивление, закон Ома
Электрические величины (ток, напряжение и сопротивление) связаны между собой. Закон Ома определяет зависимость между током, протекающим по цепи, напряжением, приложенным к участку цепи, и сопротивлением этого участка цепи.
В общем виде этот закон формулируется так: электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.
Закон Ома для всей цепи формулируется так: ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи.
При своем движении по проводнику электроны сталкиваются с атомами и при этом теряют часть своей энергии, что приводит к нагреву проводника. Таким образом, наблюдается сопротивление движению электронов. Опыты показывают, что ток в участке электрической цепи тем больше, чем больше напряжение (падение напряжения) на этом участке.
Символом G в данном уравнении обозначена электрическая проводимость участка цепи, которая тем больше, чем меньшее сопротивление оказывает проводник прохождению электрического тока.
Георг Симон Ом (1789—1854) обнаружил в 1826 году, что сопротивление многих материалов (проводников) не зависит от значения тока в проводнике и, следовательно, является константой.
Из закона Ома следует, что с ростом напряжения пропорционально увеличивается ток и что при увеличении сопротивления ток уменьшается. Единицей электрического сопротивления является 1 Ом.
На практике часто требуется определить электрический ток в некотором приемнике. Значение этого тока можно установить на основании известных значений электрического сопротивления приемника и поданного на него напряжения.
Если напряжение будет слишком велико, то ток может быть настолько большим, что вследствие теплового эффекта может разрушить приемник. Большие значения тока могут возникнуть в электрической цепи и при слишком малом сопротивлении или в случае прямого контакта (короткого замыкания) токоведущих частей цепи.
Для защиты устройств и приборов от перегрузок по току в электрические цепи включаются плавкие предохранители, которые перегорают, или автоматические выключатели, которые выключаются если ток в цепи превышает некоторое определенное значение.
Сопротивление проводника или провода тем больше, чем больше его длина l и чем меньше площадь его поперечного сечения S.
Сопротивление проводника зависит не только от его длины, площади поперечного сечения и материала, но и от температуры.
У ряда материалов значение электрического сопротивления при температуре вблизи абсолютного нуля скачкообразно падает до чрезвычайно малого значения. Это явление получило название сверхпроводимости. В настоящее время явление сверхпроводимости не получило еще широкого применения в технике, однако уже с успехом используется при решении некоторых специальных технических задач, как, например, при получении сверхмощных магнитных полей для физических исследований.
Подробнее об электрическом сопротивлении и законе Ома:
В каждой электрической цепи происходит обмен энергией. Следует при этом различать два процесса: получение электрической энергии (в источнике ЭДС) и ее преобразование в другие виды (на участках цепи, где есть падение напряжения).
Принимая во внимание закон Ома, можно написать выражение для энергии электрического тока, преобразуемой в приемнике с сопротивлением R (закон Джоуля—Ленца): W = I 2 Rt
При расчетах электроэнергетических установок чаще в качестве единиц энергии выбирают ватт-час или киловатт-час. Электрическую энергию можно преобразовывать в другие виды энергии.
Мощность можно определить как изменение энергии в единицу времени : P = dW/dt
Буквенные обозначения употребляемых в электротехнике величин
Буквенные обозначения наиболее употребляемых в электротехнике величин (ГОСТ 1494-77)
Наименование величины |