Что такое sda и scl

Общие сведения:

Подключение:

Шина поддерживает подключение до 112 устройств (при 7-ми битной адресации) по двум проводам (плюс GND и Vcc), может иметь несколько ведущих и ведомых. При использовании нескольких ведущих, каждый из них должен поддерживать этот режим и уметь определять состояние занятой шины.

I²C на Arduino

Arduino UNO R3/Piranha UNO

На Arduino UNO R3/Piranha UNO шина I2C находится на выводах A4, A5. Также в эти выводы продублированы на колодке с цифровыми выводами рядом с кнопкой Reset.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Piranha ULTRA

На Piranha ULTRA шина I²C не занимает аналоговые выводы A4, A5 и находится на цифровой колодке рядом с кнопкой Reset, выводы обозначены SDA и SCL

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Arduino MEGA R3

На Arduino MEGA R3 шина I²C находится на цифровой колодке на крайних выводах, близких к разъёму USB и на выводах 20, 21. Выводы объединены.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Примеры для Arduino

В этом примере на матрицу выводится изображение стрелки. Стоит заметить, ко всем нашим модулям написаны библиотеки с высокоуровневым интерфейсом и вовсе не обязательно работать с матрицей на низком уровне. Подробнее о работе с библиотекой матрицы можно узнать по этой ссылке.

I²C на Raspberry Pi

На Raspberry Pi I²C выводы это 3-й и 5-й выводы колодки, GPIO2 и GPIO3 по номенклатуре BCM и выводы 8, 9 по номенклатуре WiringPi.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Примеры для Raspberry

Подробнее о шине I²C:

Резисторы, ёмкость и длина линий шины

В официальном описании от NXP ничего не сказано о максимальной длине шины, но не стоит этим злоупотреблять. Шина была придумана для обмена информации между интегральными схемами в пределах одной платы одного устройства. В расчёт бралась только паразитная ёмкость линии, которая сказывается на скорости нарастания фронта волны. От этой ёмкости зависит номинал подтягивающих резисторов. Можно подобрать резисторы так, чтобы фронт волны нарастал согласно спецификации и при 100-метровой длине проводов, но это не избавляет от помех, которые влечёт за собой несимметричная электрическая реализация. Опять же, при слишком маленьком сопротивлении качество сигнала улучшается, но при этом растёт ток который необходимо пропускать устройствам через выводы для притяжки линий.

При использовании шины на модулях не существует принятого стандарта установки подтягивающих резисторов на ведущем или ведомом. У Arduino подтягивающие резисторы отсутствуют и для работы с шиной нужен хотя бы один модуль с ними. У Raspberry Pi на плате установлены подтягивающие резисторы номиналом 1,7 килоОм и для неё нет необходимости в подтяжке на модулях.

Сигналы и специальные биты шины

Устанавливаемые только ведущим

Устанавливаемые ведущим и ведомым

Обмен данными

При обмене данными тактированием занимается только ведущий, а ведомый может удерживать линию тактирования только если не успевает за ведущим, так называемое растягивание тактирования (clock-stretching). Не все модули поддерживают удержание. Установка бита на линии данных может происходит в момент, когда линия тактирования прижата, а считывания, когда линия отпущена (подтянута к Vcc), но в большинстве случаев это происходит по фронту волны на линии тактирования.

Рассмотрим пример простого обмена данными:

Запись в регистры ведомого. Данные взяты из примеров, приведённых выше.

После сигнала Start и указания адреса ведущий записывает адрес регистра с которого будет производиться дальнейшая запись. Стоит заметить, что у ведомого есть внутренний счётчик и каждый последующий байт после подтверждения будет записан в следующий регистр. Таким образом байт со значением 0x00 будет записан в регистр 0x11, байт со значением 0x18 будет записан в регистр 0x12, байт со значением 0x3C будет записан в регистр 0x13 и т. д. В этом примере биты ACK устанавливает ведомый.

Вот так сигналы этого примера выглядят на осциллографе:

Чтение из регистров ведомого. Предположим, мы хотим прочитать байт из регистра 0x13.

После сигнала Start и указания адреса ведущий записывает адрес регистра, который необходимо прочитать. Далее следует сигнал Restart (или Stop, затем Start). Ведущий снова выводит адрес ведомого, но уже с битом Read (чтения). Ведомый устанавливает бит ACK и во время следующих 8-ти импульсов тактирования выводит данные на линию SDA. На девятом импульсе уже ведущий устанавливает бит ACK (или NACK, если данные не удалось прочитать) и завершает обмен сигналом Stop.

Скорость

Первоначальный стандарт I²C был реализован на скорости 100 кГц. С тех пор появились и другие реализации шины, но большинство устройств работают на этой скорости. Так же известны случаи когда скорость шины специально снижена, чтобы увеличить расстояние передачи и уменьшить чувствительность к помехам. Не все модули могут работать на сниженной скорости.

Источник

Интерфейс I2C и Arduino

Инструкция по использованию протокола I 2 C совместно с Arduino

Нам понадобится:

1 Описание интерфейса I2C

Последовательный протокол обмена данными IIC (также называемый I2C – Inter-Integrated Circuits, межмикросхемное соединение) использует для передачи данных две двунаправленные линии связи, которые называются шина последовательных данных SDA (Serial Data) и шина тактирования SCL (Serial Clock). Также имеются две линии для питания. Шины SDA и SCL подтягиваются к шине питания через резисторы.

В сети есть хотя бы одно ведущее устройство (Master), которое инициализирует передачу данных и генерирует сигналы синхронизации. В сети также есть ведомые устройства (Slave), которые передают данные по запросу ведущего. У каждого ведомого устройства есть уникальный адрес, по которому ведущий и обращается к нему. Адрес устройства указывается в паспорте (datasheet). К одной шине I2C может быть подключено до 127 устройств, в том числе несколько ведущих. К шине можно подключать устройства в процессе работы, т.е. она поддерживает «горячее подключение».

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl Описание интерфейса I2C

Давайте рассмотрим временную диаграмму обмена по протоколу I2C. Есть несколько различающихся вариантов, рассмотрим один из распространённых. Воспользуемся логическим анализатором, подключённым к шинам SCL и SDA.

Мастер инициирует обмен. Для этого он начинает генерировать тактовые импульсы и посылает их по линии SCL пачкой из 9-ти штук. Одновременно на линии данных SDA он выставляет адрес устройства, с которым необходимо установить связь, которые тактируются первыми 7-ми тактовыми импульсами (отсюда ограничение на диапазон адресов: 2 7 = 128 минус нулевой адрес). Следующий бит посылки – это код операции (чтение или запись) и ещё один бит – бит подтверждения (ACK), что ведомое устройство приняло запрос. Если бит подтверждения не пришёл, на этом обмен заканчивается. Или мастер продолжает посылать повторные запросы.

Это проиллюстрировано на рисунке ниже. Задача такая: подключиться к ведомому устройству с адресом 0x27 и передать ему строку «SOLTAU.RU». В первом случае, для примера, отключим ведомое устройство от шины. Видно, что мастер пытается установить связь с устройством с адресом 0x27, но не получает подтверждения (NAK). Обмен заканчивается.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl Попытка мастера установить соединение с ведомым по I2C

Теперь подключим к шине I2C ведомое устройство и повторим операцию. Ситуация изменилась. На первый пакет с адресом пришло подтверждение (ACK) от ведомого. Обмен продолжился. Информация передаётся также 9-битовыми посылками, но теперь 8 битов занимают данные и 1 бит – бит подтверждения получения ведомым каждого байта данных. Если в какой-то момент связь оборвётся и бит подтверждения не придёт, мастер прекратит передачу.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl Временная диаграмма обмена по протоколу I2C

2 Реализация I2Cв Arduino

Arduino использует для работы по интерфейсу I2C два порта. Например, в Arduino UNO и Arduino Nano аналоговый порт A4 соответствует SDA, аналоговый порт A5 соответствует SCL.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl Реализация I2C в Arduino UNO и Nano

Для других моделей плат соответствие выводов такое:

ПлатаПин SDAПин SCL
Arduino Uno, Nano, Pro и Pro MiniA4A5
Arduino Mega2021
Arduino Leonardo23
Arduino Due20, SDA121, SCL1

3 Библиотека «Wire» для работы с IIC

Для облегчения обмена данными с устройствами по шине I2C для Arduino написана стандартная библиотека Wire. Она имеет следующие функции:

ФункцияНазначение
begin(address)инициализация библиотеки и подключение к шине I2C; если не указан адрес, то присоединённое устройство считается ведущим; используется 7-битная адресация;
requestFrom()используется ведущим устройством для запроса определённого количества байтов от ведомого;
beginTransmission(address)начало передачи данных к ведомому устройству по определённому адресу;
endTransmission()прекращение передачи данных ведомому;
write()запись данных от ведомого в ответ на запрос;
available()возвращает количество байт информации, доступных для приёма от ведомого;
read()чтение байта, переданного от ведомого ведущему или от ведущего ведомому;
onReceive()указывает на функцию, которая должна быть вызвана, когда ведомое устройство получит передачу от ведущего;
onRequest()указывает на функцию, которая должна быть вызвана, когда ведущее устройство получит передачу от ведомого.

4 Подключение I2C устройствак Arduino

Давайте посмотрим, как работать с шиной I2C с помощью Arduino.

Сначала соберём схему, как на рисунке. Будем управлять яркостью светодиода, используя цифровой 64-позиционный потенциометр AD5171 (см. техническое описание), который подключается к шине I2C. Адрес, по которому мы будем обращаться к потенциометру – 0x2c (44 в десятичной системе).

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl Подключение цифрового потенциометра к Arduino по шине I2C

5 Управление устройством по шине IIC

Рассмотрим диаграммы информационного обмена с цифровым потенциометром AD5171, представленные в техническом описании:

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl Рассмотрим диаграммы чтения и записи цифрового потенциометра AD5171

Нас тут интересует диаграмма записи данных в регистр RDAC. Этот регистр используется для управления сопротивлением потенциометра.

Откроем из примеров библиотеки «Wire» скетч: Файл Образцы Wire digital_potentiometer. Загрузим его в память Arduino.

После включения вы видите, как яркость светодиода циклически нарастает, а потом гаснет. При этом мы управляем потенциометром с помощью Arduino по шине I2C.

По ссылкам внизу статьи, в разделе похожих материалов (по тегу), можно найти дополнительные примеры взаимодействия с различными устройствами по интерфейсу IIC, в том числе примеры чтения и записи.

6 Дополнительно о шине I2C

Доступно и интересно рассказывает о шине I2C Джереми Блюм в своём видео:

Источник

Электроника для всех

Блог о электронике

Интерфейсная шина IIC (I2C)

Логический уровень
Как передаются отдельные биты понятно, теперь о том что эти биты значат. В отличии от SPI тут умная адресная структура. Данные шлются пакетами, каждый пакет состоит из девяти бит. 8 данных и 1 бит подтверждения/не подтверждения приема.

После адресного пакета идут пакеты с данными в ту или другую сторону, в зависимости от бита RW в заголовочном пакете.
Вот, например, Запись. В квадратиках идут номера битов. W=0

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Задача решается так:

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl
Вот и славно. Часы установлены и начали тикать. Но вот надо нам считать те же данные, а вдруг изменились?
С записью все понятно — записали вначале адрес, а потом следом записали данные. А умная микросхема все прекрасно поняла и рассовала по ячейкам. А с чтением? А с чтением все через задницу, в смысле через запись.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Скриншот с осциллографа RIGOL 1042CD

Вроде бы все, практический пример с AVR будет потом, а пока помедитируйте над диаграммой работы конечного автомата TWI передатчика ATmega8. Скоро я вас буду этим грузить!

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Страшна? 😉 На самом деле там все не так брутально. Можно обойтись вообще парой десятков строк кода на ассемблере.

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

200 thoughts on “Интерфейсная шина IIC (I2C)”

(1) OpenID работает криво. Я зашёл как blacklion.livejournal.com и всё равно справа-сверху «войти» (а не «выйти») и не даю комментировать. Пришлось регистрироваться и теперь тут два меня.

(2) Софтового мастера сделать не сложно. А вот слейва как-то просто не получается.

Щас попробую с опен ид поиграться.

Более того, многие предпочитают делать софтовый И2С мастер чтобы не заморачиваться с встроенным в TWI конечным автоматом.

Более того, многие предпочитают делать софтовый И2С мастер чтобы не заморачиваться с встроенным в TWI конечным автоматом.
Я когда первый раз подходил к электронике смотрел на PIC (зачем я это делал!? Зачем на PIC?!) так реализовал мастера в качестве упражнения за вечер. А вот слейва так и не осилил…

Я сделал софтового слейва на AT89C2051, но работало жутко медленно.

плюсадин. я уже раз 5 жаловался что логины глючат 😀 нашел выход, что залогинился, пару минуток подождал и рефреш. работает, но бесит :\

DI HALT спасибо за статью. Давно ждал рассказ про I2C. 🙂

У меня их почти полный аналог ICL12008 ваще работать не хотят — не отзываются на свой адрес, не дают ACK

и у тебя, Брут? я изъебался с их инициализацией — не пашут и все. взял ds, который считал сгоревшим и не рабочим, по по недоразумению не выкинул — и он заработал. в топку эти ISL, от лукавого они..

А у меня 5 штук их лежит — сэмплы. Надо бы в ST гневный мессадж накатать. МОл чо вы за говно нам подсунули?

Да, есть такое дело 🙂 Вообще при начале работы с IIC девайсом, желательно вдоль и поперек изучить Datasheet к нему. В свое время тоже поломал голову с m41 от ST. Вроде все пишется, все читается, но часы стоят и все тут. Оказалось там есть хитрый битик, который при пропадании всего питания — Vcc и Vbat, останавливает часы и пока его не сбросишь они не пойдут.
Ну и еще обычный прикол с часами, что не все могут работать при отключенной батарейке — даже если Vcc есть, внутри у них стоит контроль, который проверяет разницу между напругой и Vbat, и если Vbat нет, то часы просто ни на что не отвечают 🙂

p.s. а про NACK в конце чтения это да, самые популярные грабли наверно. Кстати для отлаживания шины если нет крутого осцила, можно прикрутить I2C Sniffer на Atmega8 — оч удобная штука, она в консоли показывает полностью весь обмен в удобоваримом виде.

А чё с ним было голову ломать? Кстати, m41t56 рекомендую, простые и удобные I2C часы. Про битик я давно знал — он у всех часовых изделий от ST присутствует. Наверное, как совместимость с m48t08 — который с батареей на борту. Чтобы батарею не сажать, пока таймкипер лежит на складе, они глушат часы.

О)) На самом деле классная тема! Мне бы сначала с простым UARTом разобраться, а потом только к творению Philips)) Буду ждать исходников…

Отличная статья! А есть последняя диаграмма только в чуть лучшем качестве? А то буквы трудно различить.

Красные пути — нормальная работа
Синие — возможные косяки.

Источник

Как настроить I2C-связь на Arduino

В этом уроке мы обсудим, что такое протокол связи I2C, как он работает и как его использовать на Arduino. Для демонстрации мы построим проект, использующий I2C-соединение для обмена данными между двумя микроконтроллерами Arduino.

Что такое I2C?

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Как видно на диаграмме, преимущество использования I2C состоит в том, что для связи с несколькими устройствами требуется всего два провода.

Вся связь проходит по двум проводам к ведущему и ведомым устройствам и от них. Это очень полезно при выполнении проектов Arduino, так как Arduino имеет ограниченное количество входных/выходных контактов.

Многие датчики и модули, предназначенные для Arduino используют I2C для связи.

Сеть I2C

Ведомое устройство (наследник)

Все ведомые устройства имеют I2C-адрес, который используется для идентификации устройства в сети. I2C-адрес позволяет ведущему устройству передавать данные конкретному ведомому устройству на шине.

Ведущее устройство (мастер)

Ведущие устройства могут отправлять и получать данные. Ведомые устройства реагируют на все, что посылает ведущее устройство. При отправке данных на шину только одно устройство может отправлять данные одновременно.

Эти два провода называются SDA и SCL. Провод SDA используется для связи между ведущим и ведомым устройствами.

Линия SCL несет тактовый сигнал, используемый для правильной синхронизации связи. Для поддержания обоих проводов в состоянии HIGH необходимы импульсные или подтягивающие (pull-up) резисторы.

Логические уровни

Будьте внимательны при подключении I2C устройств к Arduino.

Arduino выводит I2C-сигналы на логическом уровне, но I2C-устройства работают с различными напряжениями логического уровня.

Таким образом, I2C устройство, которое работает на 3,3 В может быть повреждено при подключении к Arduino. В паспорте устройства должно быть указано напряжение логического уровня.

Если подтягивающие резисторы подключены к +5В, все устройства должны быть совместимы для работы с логическим уровнем +5В.

Использование I2C

Чтобы продемонстрировать, как использовать I2C в Arduino, давайте создадим проект, который посылает данные туда и обратно между двумя ардуинами.

Мы будем использовать I2C связи для изменения скорости мигания светодиода контакта 13 на одном Arduino, в зависимости от положения потенциометра, подключенного к другому Arduino.

Один Arduino будет выступать в качестве мастера, а другой Arduino будет выступать в качестве ведомого.

Пины I2C Arduino

Arduino имеет специальные контакты для I2C, которые имеют встроенные подтягивающие резисторы в соответствии с требованиями протокола I2C.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Компоненты оборудования

Чтобы создать этот проект, вам понадобятся следующие компоненты:

Схема соединения

После того, как вы соберете все детали, пришло время собрать проект. Следуйте нижеприведенной электрической схеме, чтобы все подключить:

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Вы могли заметить, что у нас нет подтягивающих резисторов на линиях SDA и SCL. Подтягивающие резисторы уже встроены в I2C контакты Arduino, так что они нам не нужны.

Скетч для мастера

У нас есть два Ардуино в нашей сети I2C, так что у нас есть два набора скетчей. Один для мастера Ардуино, а другой для наследника Ардуино. Между двумя эскизами нет большой разницы, как вы увидите позже.

Теперь откройте Arduino IDE и загрузите код ниже на мастер Arduino:

Объяснение скетча для мастера

Библиотека Wire

Для использования встроенного интерфейса I2C Arduino мы будем использовать библиотеку Wire.

Эта библиотека поставляется в стандартной комплектации с Arduino IDE. Как и в других библиотеках Arduino, библиотека Wire имеет готовые I2C функции, чтобы сделать кодирование проще для нас.

Чтобы использовать функции библиотеки Wire, мы должны добавить его сначала в наш эскиз. В эскизе выше, у нас есть следующая строка в верхней части:

После включения библиотеки мы можем использовать встроенные функции библиотеки.

Отправка данных

Wire.beginTransmission()

Мы инициируем команду отправки, сначала информируя устройства на шине о том, что мы будем отправлять данные.

Wire.write()

Wire.endTransmission()

Wire.requestFrom()

Полным синтаксисом запроса данных от ведомого устройства является Wire.requestFrom(адрес, количество).

Внутри loop() мы используем Wire.requestFrom(0x08, 1); для запроса одного байта данных от ведомого устройства 0x08.

Write.available()

Wire.read();

Скетч для наследника (ведомого)

Теперь загрузите этот код ведомому Ардуино:

Объяснение скетча для ведомого

Для ведомых устройств адрес является обязательным. Для нашего проекта адрес для ведомого устройства будет 0x08. Это может быть любой адрес, но убедитесь, что он уникален в сети I2C.

Некоторые I2C ведомые устройства также имеют определенные I2C-адреса, поэтому сначала проверьте спецификацию.

Обработчики событий

Wire.onReceive()

В части скетча setup() мы добавляем функцию Wire.onReceive(handler) для регистрации функции (обработчика), которая будет управлять полученными данными.

Wire.onRequest()

Единственное отличие заключается в том, что она обрабатывает события запроса данных. Запросы данных поступают от основных устройств.

Тестирование Arduino I2C

Используя Arduino IDE, загрузите эскиз мастера Arduino в одну из Ардуино. Затем загрузите скетч наследника в другую Arduino.

Наш код принимает положение потенциометра мастера и посылает его ведомому устройству через I2C. Затем ведомое устройство использует полученное значение для настройки времени задержки мигания светодиода. То же самое происходит и с положением потенциометра ведомого.

Источник

Передача данных. Протокол I2C.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Микроконтроллер на рисунке это ведущий элемент (Master1) им может быть процессор. На рисунке представлено 3 ведомых перефириных элемента Slave В качестве Slave могут быть память, ЦАП, АЦП и пр. К шине может быть подключено до 127 устройств.

Что такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl

Состояние СТАРТ и СТОП
Процедура обмена начинается с того, что ведущий формирует состояние СТАРТ: генерирует переход сигнала линии SDA из ВЫСОКОГО состояния в НИЗКОЕ при ВЫСОКОМ уровне на линии SCL. Этот переход воспринимается всеми устройствами, подключенными к шине, как признак начала процедуры обмена. Генерация синхросигнала — это всегда обязанность ведущего; каждый ведущий генерирует свой собственный сигнал синхронизации при пересылке данных по шине. Процедура обмена завершается тем, что ведущий формирует состояние СТОП — переход состояния линии SDA из низкого состояния в ВЫСОКОЕ при ВЫСОКОМ состоянии линии SCL. Состояния СТАРТ и СТОП всегда вырабатываются ведущим.
Считается, что шина занята после фиксации состояния СТАРТ. Шина считается освободившейся через некоторое время после фиксации состояния СТОП. При передаче посылок по шине I²C каждый ведущий генерирует свой синхросигнал на линии SCL. После формирования состояния СТАРТ ведущий опускает состояние линии SCL в НИЗКОЕ состояние и выставляет на линию SDA старший бит первого байта сообщения. Количество байт в сообщении не ограничено. Спецификация шины I²C разрешает изменения на линии SDA только при НИЗКОМ уровне сигнала на линии SCL. Данные действительны и должны оставаться стабильными только во время ВЫСОКОГО состояния синхроимпульса. Для подтверждения приёма байта от ведущего-передатчика ведомым-приёмником в спецификации протокола обмена по шине I²C вводится специальный бит подтверждения, выставляемый на шину SDA после приёма 8 бита данных.
Подтверждение
Таким образом передача 8 бит данных от передатчика к приёмнику завершаются дополнительным циклом (формированием 9-го тактового импульса линии SCL), при котором приёмник выставляет низкий уровень сигнала на линии SDA, как признак успешного приёма байта.

Подтверждение при передаче данных обязательно, кроме случаев окончания передачи ведомой стороной. Соответствующий импульс синхронизации генерируется ведущим. Передатчик отпускает (переводит в ВЫСОКОЕ состояние) линию SDA на время синхроимпульса подтверждения. Приёмник должен удерживать линию SDA в течение ВЫСОКОГО состояния синхроимпульса подтверждения в стабильном НИЗКОМ состоянии.

В том случае, когда ведомый-приёмник не может подтвердить свой адрес (например, когда он выполняет в данный момент какие-либо функции реального времени), линия данных должна быть оставлена в ВЫСОКОМ состоянии. После этого ведущий может выдать состояние СТОП для прерывания пересылки данных. Если в пересылке участвует ведущий-приёмник, то он должен сообщить об окончании передачи ведомому-передатчику путём неподтверждения последнего байта. Ведомый-передатчик должен освободить линию данных для того, чтобы позволить ведущему выдать состояние СТОП или повторить состояние СТАРТ.
Синхронизация
Синхронизация выполняется с использованием подключения к линии SCL по правилу монтажного И. Это означает, что ведущий не имеет монопольного права на управление переходом линии SCL из НИЗКОГО состояния в ВЫСОКОЕ. В том случае, когда ведомому необходимо дополнительное время на обработку принятого бита, он имеет возможность удерживать линию SCL в низком состоянии до момента готовности к приёму следующего бита. Таким образом, линия SCL будет находиться в НИЗКОМ состоянии на протяжении самого длинного НИЗКОГО периода синхросигналов.

Устройства с более коротким НИЗКИМ периодом будут входить в состояние ожидания на время, пока не кончится длинный период. Когда у всех задействованных устройств кончится НИЗКИЙ период синхросигнала, линия SCL перейдет в ВЫСОКОЕ состояние. Все устройства начнут проходить ВЫСОКИЙ период своих синхросигналов. Первое устройство, у которого кончится этот период, снова установит линию SCL в НИЗКОЕ состояние. Таким образом, НИЗКИЙ период синхролинии SCL определяется наидлиннейшим периодом синхронизации из всех задействованных устройств, а ВЫСОКИЙ период определяется самым коротким периодом синхронизации устройств.

Механизм синхронизации может быть использован приёмниками как средство управления пересылкой данных на байтовом и битовом уровнях.

На уровне байта, если устройство может принимать байты данных с большой скоростью, но требует определенное время для сохранения принятого байта или подготовки к приёму следующего, то оно может удерживать линию SCL в НИЗКОМ состоянии после приёма и подтверждения байта, переводя таким образом передатчик в состояние ожидания.

На уровне битов устройство, такое, как микроконтроллер без встроенных аппаратных цепей I²C или с ограниченными цепями, может замедлить частоту синхроимпульсов путём продления их НИЗКОГО периода. Таким образом скорость передачи любого ведущего адаптируется к скорости медленного устройства.
Адресация в шине I²C
Каждое устройство, подключённое к шине, может быть программно адресовано по уникальному адресу. Для выбора приёмника сообщения ведущий использует уникальную адресную компоненту в формате посылки. При использовании однотипных устройств ИС часто имеют дополнительный селектор адреса, который может быть реализован как в виде дополнительных цифровых входов селектора адреса, так и в виде аналогового входа.

При этом адреса таких однотипных устройств оказываются разнесены в адресном пространстве устройств, подключенных к шине.

В обычном режиме используется 7-битная адресация.

Процедура адресации на шине I²C заключается в том, что первый байт после сигнала СТАРТ определяет, какой ведомый адресуется ведущим для проведения цикла обмена. Исключение составляет адрес «Общего вызова», который адресует все устройства на шине. Когда используется этот адрес, все устройства в теории должны послать сигнал подтверждения. Однако устройства, которые могут обрабатывать «общий вызов», на практике встречаются редко.

Первые семь битов первого байта образуют адрес ведомого. Восьмой, младший бит, определяет направление пересылки данных. «Ноль» означает, что ведущий будет записывать информацию в выбранного ведомого. «Единица» означает, что ведущий будет считывать информацию из ведомого.

После того, как адрес послан, каждое устройство в системе сравнивает первые семь бит после сигнала СТАРТ со своим адресом. При совпадении устройство полагает себя выбранным как ведомый-приёмник или как ведомый-передатчик, в зависимости от бита направления.

Адрес ведомого может состоять из фиксированной и программируемой части. Часто случается, что в системе будет несколько однотипных устройств (к примеру, ИМС памяти, или драйверов светодиодных индикаторов), поэтому при помощи программируемой части адреса становится возможным подключить к шине максимально возможное количество таких устройств. Количество программируемых бит в адресе зависит от количества свободных выводов микросхемы. Иногда используется один вывод с аналоговой установкой программируемого диапазона адресов[1]. При этом в зависимости от потенциала на этом адресном выводе ИМС, возможно смещение адресного пространства драйвера так, чтобы однотипные ИМС не конфликтовали между собой на общей шине.

Все специализированные ИМС, поддерживающие работу в стандарте шины I²C, имеют набор фиксированных адресов, перечень которых указан производителем в описаниях контроллеров.

Комбинация бит 11110ХХ адреса зарезервирована для 10-битной адресации.

Как следует из спецификации шины, допускаются как простые форматы обмена, так и комбинированные, когда в промежутке от состояния СТАРТ до состояния СТОП ведущий и ведомый могут выступать и как приёмник, и как передатчик данных. Комбинированные форматы могут быть использованы, например, для управления последовательной памятью.

Во время первого байта данных можно передавать адрес в памяти, который записывается во внутренний регистр-защёлку. После повторения сигнала СТАРТа и адреса ведомого выдаются данные из памяти. Все решения об авто-инкременте или декременте адреса, к которому произошёл предыдущий доступ, принимаются конструктором конкретного устройства. Поэтому в любом случае лучший способ избежать неконтролируемой ситуации на шине перед использованием новой (или ранее не используемой) ИМС — следует тщательно изучить её описание (datasheet или reference manual), получив его с сайта производителя. Более того, производители часто размещают рядом более подробные инструкции по применению.

В любом случае по спецификации шины все разрабатываемые устройства должны сбрасывать логику шины при получении сигнала СТАРТ или повторный СТАРТ и подготавливаться к приёму адреса.

Тем не менее, основные проблемы с использованием I²C шины возникают именно из-за того, что разработчики, «начинающие» работать с I²C шиной, не учитывают того факта, что ведущий (часто — микропроцессор) не имеет монопольного права ни на одну из линий шины.

1. Связь процессора с памятью (чаще EEPROM)
2. HDMI и DVI интерфейсы (для передачи служебной информации от телевизора к устройству которое воспроизводит видеоконтент, либо для передачи информации от монитора к компьютеру для передачи информации, что за монитор подключили с какими характеристикаи, передача информации от термостата ЦП или информация о скорости вращения кулера и т.д.)
3. Микросхемы и карты памяти (EEPROM, RAM, FERAM, Flash);
4. Доступ к низкоскоростным ЦАП/АЦП;
5. Регулировка контрастности, насыщенности и цветового баланса мониторов;
6. Регулировка звука в динамиках;
7. Управление светодиодами, в том числе в мобильных телефонах;
8. Чтение информации с часов реального времени (кварцевых генераторов);
9. Управление включением/выключением питания системных компонент;
10. Клавиатуры
11. Информационный обмен между микроконтроллерами;

Пример системы с шиной I²C:
На рисунке (Кликабельно):
(a) Высокоинтегрированный телевизорЧто такое sda и scl. Смотреть фото Что такое sda и scl. Смотреть картинку Что такое sda и scl. Картинка про Что такое sda и scl. Фото Что такое sda и scl
Микроконтроллер
ФАПЧ-синтезатор
Флеш-память
Мультисистемный декодер сигналов цветности
Стереодекодер звука
Улучшитель сигнала картинки
Hi-Fi аудиопроцессор
Аналоговый видеопроцессор
Декодер телетекста
ИМС сигналов OSD
(b) базовая станция радиотелефона стандарта DECT
Генератор DTMF
Интерфейс телефонной линии
Кодек АДИКМ
Пакетный контроллер
Микроконтроллер

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *