Что такое rsa ключ
Иллюстрация работы RSA на примере
Вокруг алгоритмов шифрования с отрытым и закрытым ключом существует множество недопониманий и мистификаций. Здесь я хотел бы предельно коротко и наглядно, с конкретными числами и минимумом формул, показать, как это работает.
Я не вдаюсь в теорию (не очень понятно, на какой уровень подготовки читателя следует рассчитывать), но я уверен, что прочитав эту короткую иллюстрацию, любому человеку будет проще разобраться в формулах и строгих доказательствах.
Итак. Допустим, я хочу получить от вас некие данные. Мы с вам не хотим, чтобы эти данные узнал кто-то, кроме нас. И у нас нет никакой уверенности в надёжности канала передачи данных. Приступим.
Шаг первый. Подготовка ключей
Я должен проделать предварительные действия: сгенерировать публичный и приватный ключ.
Теперь пара чисел
Шаг второй. Шифрование
Строго говоря, вам вовсе незачем вычислять огромное число «19 в степени 5». При каждом умножении достаточно вычислять не полное произведение, а только остаток от деления на 21. Но это уже детали реализации вычислений, давайте не будем в них углубляться.
Шаг третий. Расшифровка
Я получил ваши данные ( E=10 ), и у меня имеется закрытый ключ
Обратите внимание на то, что открытый ключ не может расшифровать сообщение. А закрытый ключ я никому не говорил. В этом вся прелесть асимметричного шифрования.
Заметьте, никто, кроме меня (даже вы!) не может расшифровать ваше сообщение ( E=10 ), так как ни у кого нет закрытого ключа.
В чём гарантия надёжности шифрования
Постараюсь это показать на примере. Давайте разложим на множители число 360:
Мы на каждом шагу, практически без перебора, получали всё новые и новые множители, легко получив полное разложение 360=2×2×2×3×3×5
Давайте теперь возьмём число 361. Тут нам придётся помучиться.
При использовании больших чисел, задача становится очень сложной. Это позволяет надеяться, что у взломщика просто не хватит вычислительных ресурсов, чтобы сломать ваши шифр за обозримое время.
А как это всё работает на практике?
Многие читатели спрашивают, как всё это применяется на практике. Давайте рассмотрим чуть более приближенный к жизни пример. Зашифруем и расшифруем слово «КРОТ», предложенное одним из читателей. А заодно, бегло рассмотрим, какие проблемы при этом встречаются и как они решаются.
Сперва сгенерируем ключи с чуть бо́льшими числами. Они не так наглядны, но позволят нам шифровать не только числа от нуля до 20.
Оттолкнёмся от пары простых чисел
= <17, 19>. Пусть наш открытый ключ будет
Мы готовы к шифрованию. Переведём наше слово в цифровое представление. Мы можем взять просто номера букв в алфавите. У нас получится последовательность чисел: 11, 17, 15, 19.
Мы можем зашифровать каждое из этих чисел открытым ключом
Немного о сложностях
На самом деле, изложенный способ шифрования очень слаб и никогда не используется. Причина проста — шифрование по буквам. Одна и та же буква будет шифроваться одним и тем же числом. Если злоумышленник перехватит достаточно большое сообщение, он сможет догадаться о его содержимом. Сперва он обратит внимание на частые коды пробелов и разделит шифровку на слова. Потом он заметит однобуквенные слова и догадается, как кодируются буквы «a», «и», «o», «в», «к»… Путём недолгого перебора, он вычислит дополнительные буквы по коротким словам, типа «но», «не», «по». И по более длинным словам без труда восстановит все оставшиеся буквы.
Таким образом, злоумышленнику не придётся отгадывать ваши секретные ключи. Он взломает ваше сообщение, не зная их.
Чтобы этого не происходило, используются специальные дополнительные алгоритмы, суть которых в том, что каждая предыдущая часть сообщения начинает влиять на следующую.
Последовательность (11, 28, 43, 62) получается «запутанной». Все буквы в ней как бы перемешаны, в том смысле, что на каждый код влияет не одна буква, а все предыдущие.
На практике, в исходное сообщение специально добавляются случайные и бессмысленные буквы в начало. Чтобы даже по первому коду было невозможно ничего понять. Получатель просто отбрасывает начало сообщения.
То есть мы можем добавить случайное число в начало и получить (299, 11, 17, 15, 19). После перемешивания получится: 299, 310, 4, 19, 38. После шифрования уже невозможно будет догадаться где была какая буква.
В реальной жизни всё ещё немного сложнее. Блоки, на которые бьётся сообщение длиннее одной буквы. Поэтому, сперва применяются алгоритмы выравнивания, потом алгоритмы разбиения на блоки с перепутыванием, и только потом применяется само RSA-шифрование.
Получатель делает всё в обратном порядке: расшифровывает, «распутывает» блоки и отбрасывает ненужную информацию, добавленную просто для выравнивания (чтобы сообщение можно было разбить на целое число блоков).
Детали и принципы формирования блоков можно почитать тут. Я же в этой заметке хотел рассказать только про RSA. Надесь, удалось.
RSA, а так ли все просто?
Прелюдия
Немного теории
Для того чтобы понять почему крайне не рекомендуется использовать RSA в его наиболее простой форме сперва отметим следующее требование, выдвигаемое к асимметричным криптосистемам.
Требование 1:
Современная асимметричная криптосистема может(но это еще не факт) считаться стойкой, если злоумышленник, имея два открытых текста M1 и M2, а также один шифротекст Cb не может с вероятностью большей, чем 0.5 определить какому из двух открытых текстов соответствует шифротекст Cb.
Посмотрим, удовлетворяет ли RSA данному требованию. Итак, представим, злоумышленник Мэлори прослушивает переписку Алисы и Боба. В один чудесный для себя день он видит, что Боб в открытом виде задал Алисе очень важный вопрос, знание ответа на который обогатит, ну или, по крайней мере, безмерно потешит любопытство Мэлори. Алиса односложно отвечает Бобу на этот вопрос личного характера. Она шифрует свой ответ открытым ключом Боба и отправляет шифротекст. Далее Мэлори перехватывает шифротекст и подозревает, что в нем зашифровано либо «Да», либо «Нет». Всё, что ему теперь нужно сделать для того чтобы узнать ответ Алисы это зашифровать открытым ключом Боба слово «Да» и если полученный криптотекст совпадет с перехваченным, то это означает, что Алиса ответила «Да», в противном же случает злоумышленник поймет, что ответом было «Нет».
Как видно из этого, пускай несколько надуманного, но все же не столь и утопичного примера, RSA не столь надежна как это принято считать. Да конечно, можно сказать, что Алиса сама дура и никто ее не просил отвечать на такой серьезный для нее вопрос односложно. Так что же теперь запретить использование односложных ответов в криптографии? Конечно, нет. Все не так плохо, достаточно чтобы алгоритм добавлял к тексту некоторую случайную информацию, которую бы невозможно было предугадать и коварный Мэлори будет бессилен. Ведь, в самом деле, не сможет же он предсказать, что ответ «Да» после обработки алгоритмом превратится, например, в «Да4FE6DA54», а следовательно и зашифровать это сообщение он не сможет и нечего ему будет сравнивать с перехваченным криптотекстом.
Таким образом, уже сейчас можно сказать, что RSA во всех своих проявлениях будь то PGP или SSL не шифрует только отправленные на вход шифрующей функции данные. Алгоритм сперва добавляет к этим данным блоки содержащие случайный набор бит. И только после этого полученный результат шифруется. Т.е. вместо привычной всем
C=M E (mod N)
получаем более близкую к действительности
C=(M||Rand) E (mod N),
где Rand случайное число.
Такую методику называют схемами дополнения. В настоящее время использование RSA без схем дополнения является не столько плохим тоном, сколько непосредственно нарушением стандартов.
Но это далеко не все. Считается, что даже если криптоситема удовлетворяет сформулированному выше требованию, это еще не доказывает ее пригодность в практических целях. Сформулируем еще одно требование к стойкости асимметричного алгоритма.
Требование 2:
Пусть злоумышленник имеет доступ к расшифровывающему «черному ящику». Т.е. любой криптотекст по просьбе злоумышленника может быть расшифрован. Далее злоумышленник создает два открытых текста M1 и M2. Один из этих текстов шифруется и полученный в результате криптотекст Cb возвращается злоумышленнику. Задача злоумышленника угадать с вероятностью большей чем 0.5 какому из сообщений M1 и M2 соответсвует криптотекст Cb. При этом он может попросить расшифровать любое сообщение, кроме Cb(в противном случае игра не имеет смысла). Говорят что криптосистема стойкая, если злоумышленник, даже в таких прекрасных для себя условиях, не сможет указать какому исходному тексту соответствует Cb с вероятностью большей 0.5.
В свете вышесказанного посмотрим как с этим обстоят дела в RSA.
Итак, злоумышленник имеет два сообщения M1 и M2. А также криптотекст
Cb=M1 E (mod N).
Ему необходимо указать какому конкретно из двух текстов соответствует Cb. Для этого он может предпринять следующее. Зная открытый ключ E, он может создать сообщение
C’=2 E *Cb(mod N).
Далее он просит расшифровывающий «черный ящик» расшифровать сообщение C’. А затем несложная арифметика ему в помощь. Имеем:
M’=C’ D (mod N)=2 ED *M1 ED (mod N)=2*M1(mod N).
Т.е. вычислив M’/2 злоумышленник увидит M1. А это означает, что он поймет что в нашем примере было зашифровано сообщение M1, а следовательно мы еще раз убедились в неприемлемости использования RSA в его наивном виде на практике.
Устранить и эту неприятность помогают схемы дополнения. Только теперь к ним выдвигается требование не только о том, чтобы дополнительная информация была абсолютно случайной и непрогнозируемой. Но так же и том, чтобы дополнительные блоки помогали определить был ли шифротекст получен в результате работы шифрующей функции или он смоделирован злоумышленником. Причем в случае, если будет обнаружено, что шифротекст смоделирован вместо расшифрованных данных атакующему будет выдано сообщение о несоответствие данных реальному криптотексту.
Казалось бы, реализация такой схемы дополнения является труднорешаемой задачей, но ведь в криптографии уже есть готовый инструмент контроля целостности данных. Конечно же, это хеш-функции. Все современные схемы дополнений реализованы на идее применения хеш-функции в качестве проверки расшифрованных данных на подлинность.
В RSA при подписи и при шифровании данных используют две различные схемы дополнений. Схема, реализуемая для подписания документов, называется RSA-PSS(probabilistic signature scheme) или вероятностная схема подписи. Схема, используемая при шифровании – RSA-OAEP(Optimal asymmetric encryption padding) или оптимизированное асимметричное дополнение шифрования, на примере OAEP и рассмотрим как на самом деле происходит шифрование сообщений в RSA.
RSA-OAEP
Заключение
Т.е. RSA это не только возведение в степень по модулю большого числа. Это еще и добавление избыточных данных позволяющих реализовать дополнительную защиту вашей информации. Вы, возможно, спросите: а зачем это все нужно? Неужели в действительности может произойти такая ситуация, когда атакующий получит доступ к расшифровывающему алгоритму? Совсем по другому поводу как-то было сказано: если какая-либо неприятность может произойти, она обязательно произойдет. Только вот с использованием схем дополнений это уже не будет считаться неприятностью.
upd: перенес в блог криптография.
upd2:
Литература и ссылки:
1. Н. Фергюссон, Б. Шнайер «Практическая криптография»
2. Н. Смарт «Криптография»
3. Спецификация RSA-OAEP(pdf)
Шифрование RSA для первокурсников
Когда я учился программировать, меня всегда раздражало решать на практиках неинтересные задачи. Теперь я преподаю, и мне не хочется, чтобы студенты скучали на моих занятиях.
В этой статье я решаю на языке MIT Scheme задачу шифрования и дешифрования методом RSA [1]. По ряду причин, которые рассматриваются в статье, реализация не может использоваться для криптографической защиты информации.
Генерация ключей — поиск простых чисел
RSA относится к ассиметричным алгоритмам шифрования: если для шифрования используется открытый ключ, то для дешифрования используется закрытый, и наоборот. Первое свойство позволяет кому угодно зашифровать сообщение открытым ключом в адрес владельца закрытого ключа и тем самым обеспечить его конфиденциальность. Второе свойство позволяет владельцу ключа зашифровать хэш сообщения закрытым ключом, чтобы кто угодно мог дешифровать зашифрованный хэш, сравнить его с хэшем сообщения и определить, было ли сообщение модифицровано.
Первый этап генерации ключей — случайный выбор двух достаточно больших простых чисел p и q. Натуральное число x называется простым, если у него есть ровно два различных делителя: 1 и x. Все другие делители числа располагаются на отрезке от 2 до квадратного корня из x, однако достаточно проверять на кратность только простые делители, принадлежащие этому отрезку.
Произведение найденных простых чисел является первым элементом открытого и закрытого ключей. Приведённый алгоритм позволяет найти за разумное время только первые миллион простых чисел. В реализациях RSA, используемых для защиты информации, используются алгоритмы поиска простых чисел, позволяющие найти простые числа с большим числом разрядов; благодаря тому, что лучший известный алгоритм разложения числа на простые множители работает за время, пропорциональное экспоненте от количества разрядов, считается что восстановить пару простых чисел по рассматриваемому элементу открытого ключа невозможно [2].
Генерация ключей — поиск взаимно простого числа
Для вычисления вторых элементов открытого и закрытого ключей используется величина fi, равная функции Эйлера [3], вычисленной на n. Функция Эйлера от x равна количеству натуральных чисел, не больших x и взаимно простых с ним. Для n это количество будет равно произведению p-1 и q-1.
Вторым элементом открытого ключа выбирается случайное число e в диапазоне от 1 до fi, являющееся взаимно простым с fi. то есть таким, что наибольшим общим делителем чисел является 1.
Для поиска наибольшего общего делителя можно использовать алгоритм Евклида [4].
Генерация ключей — операции в кольце вычетов
Одним из объектов, изучаемых теорией чисел, является кольцо вычетов [5]. Кольцо вычетов по модулю k — это целые числа от 0 до k-1 и операции сложения и умножения на нём. Сложение в кольце вычетов (a + b mod k) отличается от сложения в группе целых чисел тем, что если результат сложения становится больше k, из него вычитается k, в результате чего этот результат снова оказывается в кольце. Интуитивно, кольцо получается из отрезка соединением его концов.
Как и в группе целых чисел, умножение в кольце вычетов можно задать при помощи сложения, а возведение в степень — при помощи умножения. Как и в группе целых чисел, получившиеся операции сложения и умножения будут обладать ассоциативностью, то есть:
a + (b + c mod k) mod k = (a + b mod k) + c mod k
a * (b * c mod k) mod k = (a * b mod k) * c mod k
Вторым элементом открытого ключа должно быть число d такое, что его произведение с e в кольце вычетов по модулю n является 1, то есть мультипликативно обратный элемент. Привожу алгоритм поиска такого элемента при помощи расширенного алгоритма Евклида [6].
Шифрование и дешифрование
При помощи алгоритма RSA можно шифровать сообщения, представленные серией чисел M в диапазоне от 0 до n-1. Шифрование состоит в возведении M в степень e в кольце вычетов по модулю n, дешифрование — в степень d. Благодаря тому, что умножение является ассоциативным, мы можем возводить в степень x за log(x) операций [7].
Контрольный пример
В моём примере открытый ключ представляет собой пару (250483 31), закрытый — пару (250483 32191). Зашифрованное сообщение 123456 равно 133240.
RSA: от простых чисел до электронной подписи
Выясняем, как и откуда можно получить электронную подпись на примере криптосистемы RSA.
Содержание
Определения и обозначения
Описание криптосистемы RSA
Асимметричные криптографические системы
Шифрование и дешифрование
Получение подписи сообщения по RSA
Электронная подпись документов
Введение
Наверняка вы сталкивались с таким понятием, как «электронная подпись». Если обратиться к федеральному закону, то можно найти следующее её определение:
Задача ЭП ясна, теперь хотелось бы увидеть и прочувствовать, что именно скрывается за этими двумя словами. Копаясь дальше в гугле, можно найти довольно много различных алгоритмов создания цифровой подписи (DSA, ГОСТ Р 34.10-2012, RSA-PSS и т.д.), разбираться в которых неподготовленному пользователю сложно.
Спасти эту ситуацию и помочь разобраться в том, что есть ЭП, может криптосистема RSA, разработанная Ривестом, Шамиром и Адлеманом в 1978 году. Она не загромождена безумным количеством алгоритмов и основывается на относительно простой математике. В связи с этим можно шаг за шагом прийти от модульной арифметики к алгоритму создания электронной подписи, чему я и хочу посвятить данную статью.
Теорминимум
Сформируем небольшой словарик терминов, которые нам пригодятся далее:
Открытый текст – данные, подлежащие шифрованию или полученные в результате расшифрования
Шифртекст – данные, полученные в результате применения шифра к открытому тексту
Шифр – совокупность обратимых преобразований, зависящая от некоторого параметра (ключа)
Ключ – параметр шифра, определяющий выбор одного преобразования из совокупности.
Факторизация – процесс разложения числа на простые множители.
НОД – наибольший общий делитель.
Числа a и b называются взаимно простыми, если НОД этих чисел равен 1.
Функция Эйлера φ(n) – функция, равная количеству натуральных чисел, меньших n и взаимно простых с ним.
Хочу отметить, что на данном этапе подразумевается, что вы знакомы с арифметическими операциями по модулю. Если нет, то здесь можно о них почитать.
Как оно устроено
Прежде, чем окунуться в необъятный мир математики рассмотреть, как именно устроена RSA, обратимся к тому, как работают
Асимметричные криптосистемы
Рассмотрим задачу сохранности содержимого посылки при передаче от отправителя к адресату. Вот картинка с многим полюбившимся Алисой и Бобом:
Алиса хочет передать Бобу посылку. Для начала Боб на своей стороне создает уникальные замок и ключ к нему (открытый и закрытый ключ соответственно). Далее, Боб делится с окружающим миром своим замком, чтобы любой желающий отправить ему посылку смог её закрыть. Поскольку ключ от подобного замка один и находится только у Боба, никто, кроме Боба, просмотреть содержимое после защёлкивания замка не сможет. В конце концов, Алиса с помощью полученного замка закрывает посылку и передаёт Бобу, который открывает её своим ключом. Таким образом устроены асимметричные криптографические системы, которой как раз является RSA.
В схеме передачи посылки все объекты вполне материальны. Однако сообщения, которые мы хотим шифровать, являются ничем иным, как последовательностью бит, которую нельзя «закрыть» на физический замок. Таким образом возникают вопросы: что такое ключ и замок? Как Бобу создать ключи? Каким образом ключи связаны и как с их помощью зашифровать сообщение? Здесь нам поможет математика.
Теперь к математике
Асимметричные криптографические системы основаны на так называемых односторонних функциях с секретом. Под односторонней понимается такая функция я y=f(x), которая легко вычисляется при имеющемся x, но аргумент x при заданном значении функции вычислить сложно. Аналогично, односторонней функцией с секретом называется функция y=f(x, k), которая легко вычисляется при заданном x, причём при заданном секрете k аргумент x по заданному y восстановить просто, а при неизвестном k – сложно.
Подобным свойством обладает операция возведения числа в степень по модулю:
Здесь φ(n) – функция Эйлера числа n. Пока условимся, что это работает, далее это будет доказано более строго. Теперь нужно понять, что из это является ключами Боба, а что сообщением. В нашем распоряжении имеются числа c, m, n, e, d.
Давайте посмотрим на первое выражение. Здесь число c получено в результате возведения в степень по модулю числа m. Назовём это действие шифрованием. Тогда становится очевидно, что m выступает в роли открытого текста, а c – шифртекста. Результат c зависит от степени e, в которую мы возводим m, и от модуля n, по которому мы получаем результат шифрования. Эту пару чисел (e, n) мы будем называть открытым ключом. Им Алиса будет шифровать сообщение.
Смотрим на второе действие. Здесь d является параметром, с помощью которого мы получаем исходный текст m из шифртекста c. Этот параметр мы назовём закрытым ключом и выдадим его Бобу, чтобы он смог расшифровать сообщение Алисы.
Что есть что разобрались, теперь перейдём к конкретике, а именно – генерации ключей Боба. Давайте выберем число n такое, что:
где p и q – некоторые разные простые числа. Для такого n функция Эйлера имеет вид:
Такой выбор n обусловлен следующим. Как вы могли заметить ранее, закрытый ключ d можно получить, зная открытый e. Зная числа p и q, вычислить функцию Эйлера не является вычислительно сложной задачей, ровно как и нахождение обратного элемента по модулю. Однако в открытом ключе указано именно число n. Таким образом, чтобы вычислить значение функции Эйлера от n (а затем получить закрытый ключ), необходимо решить задачу факторизации, которая является вычислительно сложной задачей для больших n (в современных системах, основанных на RSA, n имеет длину 2048 бит).
Возвращаемся к генерации ключей. Выберем целое число e:
Для него вычислим число d:
Для отыскания числа, обратного по модулю, можно воспользоваться алгоритмом Евклида.
Мы завершили с этапом генерации ключей. Теперь Боб публикует свой открытый ключ (e, n), прячет закрытый d, а мы переходим к Алисе.
Шифруем, дешифруем.
Возьмём в качестве сообщения число m (m ∈ [1, n − 1]). Чтобы Алисе зашифровать его, необходимо возвести его в степень e по модулю n. Эти числа идут вместе с открытым ключом Боба:
Здесь за с обозначен шифртекст, который Алиса будет должна передать Бобу. Отметим также, что c ∈ [1, n − 1], как и m. Расшифруем шифртекст, возведя его в степень закрытого ключа Боба d:
Здесь нам понадобится теорема Эйлера:
Также полезной будет китайская теорема об остатках:
Получаем подпись сообщения
Ещё раз напишем две ключевые формулы шифрования и расшифрования соответственно:
Теперь давайте предположим, что Боб хочет отправить Алисе открытку m от своего имени. У Боба в распоряжении уже имеются два ключа (e, n) и d, которые он сгенерировал по алгоритму, описанному ранее. Поскольку d является закрытым ключом, то можно им воспользоваться как уникальным идентификатором Боба. Давайте «зашифруем» m с помощью d:
Результат данной операции и есть подпись сообщения Боба. Заметим, что подпись напрямую зависит от подписываемого сообщения, а не только от того, что его подписывает Боб. Далее, Алиса получает сообщение m, подпись s и открытый ключ (e, n). По аналогии с расшифрованием, проверка подписи осуществляется возведением подписи s в степень открытой экспоненты e:
Если Алиса получила, что m ≡ m′, то подпись считается правильной.
Дочитавших до этого места хочу поздравить с получением первой цифровой подписи «на бумаге»!
Подпись документов
Рассмотренный алгоритм получения подписи изящен и прост в осознании, однако операция возведения в степень несколько «мешается». Наша текущая задача – подписать объёмный документ. Чтобы сэкономить время, мы не будем подписывать содержимое документа, а прибегнем к помощи хэш-функций (если вы не знаете, что такое хэш-функция, рекомендую почитать википедию). Скажу лишь то, что выходная последовательность хэш-функции имеет небольшую (по сравнению с размером ключей) длину, а также по имеющемуся хэшу нельзя однозначно восстановить исходные данные.
На картинках наглядно показано, в какой момент мы используем хэширование. Создание подписи:
В качестве хэш-функции можно использовать SHA-256, как это сделано, например, в PGP. По теме практического создания электронной подписи с использованием PGP на хабре уже написана статья, поэтому на этом месте имеет смысл поставить точку и перейти к заключению.
Заключение
Вот мы и прошли все стадии создания электронной подписи, начиная с простой модульной арифметики и заканчивая, собственно, получением подписи. Обладая этими знаниями, вы можете попробовать перевести их на ваш любимый язык программирования и написать свою защищенную аську, например. В том, как именно их применить, вас ограничит только ваше воображение.
Отмечу, что другие существующие алгоритмы создания ЭП основаны на схожих принципах, поэтому надеюсь, что после прочтения этой статьи вам будет проще разобраться в них. «Следующей по сложности» я обозначу криптосистему Эль-Гамаля, но о ней уже не в этом посте.
Спасибо за внимание!
Источники
Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone
Криптографические методы защиты информации: учеб. пособие / С. М. Владимиров, Э. М. Габидулин, А. И. Колыбельников, А. С. Кшевецкий; под ред. А. В. Уривского. – М.: МФТИ, 2016
Маховенко Е. Б. Теоретико-числовые методы в криптографии — М.: Гелиос АРВ, 2006.
NIST Special Publication 800-57 Part 3 Revision 1