Что такое risc процессоры
Cisc и Risc процессоры: архитектура, иерархия, разновидности
процессор — это своего рода «мозг» компьютера, именно он считывает разнообразные инструкции, которые определяют, что нужно сделать компьютеру;
архитектура процессора — это количественная комбинация инструкций, которые понимает процессор.
Если объяснить проще, то архитектура — это совместимость набора инструкций отдельных программ с процессором. Получа е тся, что если программа написана под какую-то конкретную архитектуру процессора, то на процессоре с другой архитектурой она работать не будет. Например, если программный продукт собран под архитектуру х86, то на ARM-процессоре она работать не будет.
Архитектура RISC и CISC
Справедливости ради стоит отметить, что эти две архитектуры определяют разновидности двух основных видов процессоров, при этом существуют еще менее распространенные архитектуры, например:
архитектура MISC — эта архитектура свойственна нетребовательным процессорам устройств с минимальным набором команд, например: роутеры, миникомпьютеры, IoT и др.;
архитектура VLIW — данная архитектура рассчитана для «очень длинных машинных команд», что по факту дает процессору возможность выполнять инструкции с несколькими параллельными операциями;
прочие специфические архитектуры, которые очень узко специализированы, иногда даже под конкретное устройство.
Архитектура CISC
Архитектура CISC (Complex Instruction Set Computer) — это специальный тип архитектуры процессора, который, во-первых, поддерживает нефиксированную длину команд, а во-вторых, содержит внутри себя большое количество сложных инструкций процессора, которые могут выполнять большое количество действий.
Архитектура CISC предполагает:
минимальное количество регистров общего характера;
максимальный объем простых машинных инструкций;
присутствие сложных инструкций, которые функционально напоминают операторы высокоуровневых языков программирования;
различные варианты адресации инструкций;
принятие различных форматов инструкций;
присутствие возможности обрабатывать команды «регистр-память».
Наиболее яркими процессорами с такой архитектурой являются:
Архитектура RISC
Многие разработчики стали замечать, что потенциал архитектуры CISC не использовался полностью, поэтому множество ее сложных инструкций просто оставались без дела. Плюс была явная сложность в правильном выборе нужной инструкции для компилирования конкретной программы — это также вводило в ступор. Поэтому было принято решение создать процессор с архитектурой, в основе которой будет находит ь ся множество простых инструкций.
Выложить товар на ленту.
Оплатить товар через терминал.
Сложить товар в свой пакет.
Без внедрения конвейеризации процесс будет происходить следующим образом: пока один покупатель не пройдет все три такта на кассе — следующий будет ждать. То есть, пока один покупатель не сложит свой оплаченный товар в пакет, другой не начнет выкладывать свой товар на ленту. Но если внедрить конвейеризацию, то все будет происходит ь по-другому.
Первый покупатель выкладывает товар на ленту и переходит к о второму такту — оплате через терминал. Пока он оплачивает, второй покупатель начинает выкладывать товар на ленту. Первый покупатель опла чивает товар и начинает складывать его в пакет. Пока он это делает, второй покупатель начинает оплачивать свой товар через терминал, а третий уже начинает выкладывать свой товар на ленту.
Точно так же происходит и с инструкциями в процессорах с архитектурой RISC. За счет конвейеризации архитектура RISC работает намного быстрее, чем архитектура CISC. Это заметно, даже если архитектура RISC должна выполнить 5-6 инструкций вместо одной в CISC.
Архитектуру RISC применяют ARM-процессоры. Кстати, в 2020-м году с большим отрывом по производительности среди всех суперкомпьютеров мира победил суперкомпьютер, который использовал в качестве своей «начинки» ARM-процессоры с архитектурой RISC.
Заключение
Мы где-то в начале статьи написали, что архитектур ы RISC и CISC очень похожи и грань между ними слегка размыта. Да, у обеих архитектур диаметрально противоположный подход к использованию процессора, но конкуренция тоже делает свое дело. Поэтому CISC и RISC стали «перенимать» друг у друга лучшие решения. К примеру, конвейеризация раньше никогда не была доступной в CISC, но именно этот процесс был способен «уничтожить» эту архитектуру на корню, поэтому создателям CISC нужно было срочно предпринять и сэмулировать конвейеризацию в своих процессорах. Что они и сделали: они «разбили» сложные инструкции CISC на более простые и назвали этот процесс «микрооперации». Это не конвейеризация и ничего общего с RISC-инструкциями не имеет, но работает по такому же принципу, что также ускоряет работу CISC-процессоров.
Конвейер в RISC практически постоянно заполнен инструкциями, а микрооперации в CISC не могут организовать постоянное заполнение конвейера, поэтому возникало очень много «пустот». Из-за этого разработчики CISC пошли на дополнительный трюк, так называемый гипертрединг. Гипертрединг позволил CISC-процессору выполнять сразу несколько потоков инструкций. В этом случае если один поток не способен «наполнить» конвейер, то для этого берутся инструкции из других потоков.
Разработчики RISC заметили, что гипертрединг — это хорошо. А в их архитектуре редко, но иногда проскакивает «пустота» в конвейере, поэтому они внедрили гипертрединг и в своих процессорах.
Такое «копирование функционала» сделало свое дело: архитектура RISC и архитектура CISC стали очень похожи. Но при этом многие специалисты пророчат светлое будущее именно архитектуре RISC.
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
Собственная платформа. Часть 0.1 Теория. Немного о процессорах
Здравствуй, мир! Сегодня у нас серия статьей для людей со средними знаниями о работе процессора в которой мы будем разбираться с процессорными архитектурами (у меня спелл чекер ругается на слово Архитектурами/Архитектур, надеюсь я пишу слово правильно), создавать собственную архитектуру процессора и многое другое.
Принимаются любые замечания!
Немного про архитектуру процессора
Исторически сложилось, что существуют много процессоров и много архитектур. Но многие архитектуры имеют схожести. Специально для этого появились «Группы» архитектур типа RISC, CISC, MISC, OISC (URISC). Кроме того они могут иметь разные архитектуры адресации памяти (фон Неймана, Гарвард). У каждого процессора есть своя архитектура. Например большинство современных архитектур это RISC (ARM, MIPS, OpenRISC, RISC-V, AVR, PIC** и т.д.), но есть архитектуры которые выиграли просто за счет других факторов (Например удобство/цена/популярность/etc) Среди которых x86, x86-64 (Стоит отметить, что x86-64 и x86 в последних процессорах используют микрокод и внутри них стоит RISC ядро), M68K. В чем же их отличие?
Reduced Instruction Set Computer — Архитектура с уменьшенным временем выполнения инструкций (из расшифровка RISC можно подумать, что это уменьшенное количество инструкций, но это не так). Данное направления развилось в итоге после того, как оказалось, что большинство компиляторов того времени не использовали все инструкции и разработчики процессоров решили получить больше производительности использую Конвейеры. В целом RISC является золотой серединой между всеми архитектурами.
Яркие примеры данной архитектуры: ARM, MIPS, OpenRISC, RISC-V
Что такое TTA? ТТА это Архитектура на основе всего одной инструкции перемещения из одного адреса памяти в другую. Данный вариант усложняет работу компилятора зато дает большую производительность. У данной архитектуры есть единственный недостаток: Сильная зависимость от шины данных. Именно это и стало причиной ее меньшей популярности. Надо отметить что TTA является разновидностью OISC.
Яркие примеры: MOVE Project
OISC (URISC)?
One Instruction Set Computer — Архитектура с единственной инструкцией. Например SUBLEQ. Такие архитектуры часто имеют вид: Сделать действие и в зависимости от результата сделать прыжок или продолжить исполнение. Зачастую ее реализация достаточно простая, производительность маленькая, при этом снова ограничение шиной данных.
Яркие примеры: BitBitJump, ByteByteJump, SUBLEQ тысячи их!
CISC — Complex Instruction Set Computer — ее особенность в увеличенных количествах действий за инструкцию. Таким образом можно было теоретически увеличить производительность программ за счет увеличения сложности компилятора. Но по факту у CISC плохо были реализованы некоторые инструкции т.к. они редко использовались, и повышение производительности не было достигнуто. Особенностью этой группы является еще ОГРОМНАЯ Разница между архитектурами. И несмотря на названия были архитектуры с маленьким количеством инструкций.
Яркие примеры: x86, M68K
Адресация памяти
Архитектура фон Неймана
Особенностью таких архитектур была общая шина данных и инструкций. Большинство современных архитектур это программный фон Нейман, однако никто не запрещает делать аппаратный Гарвард. У данной архитектуры большим недостатком является большое зависимости производительности процессора от шины. (Что ограничивает общую производительность процессора).
Архитектура гарварда
Особенность этой архитектуры является отдельная шина данных и инструкций. Дает большую производительность чем фон Нейман за счет возможности за один такт использовать обе шины (читать из шины инструкций и одновременно записывать в шинну данных), но осложняет архитектуру и имеет некоторые ограничения. В основном используется в микроконтроллерах.
Особенности процессоров
Конвейеры
Что такое конвейеры? Если сказать очень глупым языком это несколько параллельных действий за один такт. Это очень грубо, но при этом отображает суть. Конвейеры за счет усложнения архитектуры позволяют поднять производительность. Например конвейер позволяет прочитать инструкцию, исполнить предыдущую и записать в шину данных одновременно.
На картинке более понятно, не правда?
IF — получение инструкции,
ID — расшифровка инструкции,
EX — выполнение,
MEM — доступ к памяти,
WB — запись в регистр.
Вроде все просто? А вот и нет! Проблема в том что например прыжок (jmp/branch/etc) заставляют конвейер начать исполнение (получение след. инструкции) заново таким образом вызывая задержку в 2-4 такта перед исполнение следующей инструкции.
Расширение существующих архитектур
Достаточно популярной техникой является добавление в уже существующую архитектуру больше инструкций через расширения. Ярким примером является SSE под x86. Этим же грешит ARM и MIPS и практически все. Почему? Потому что нельзя создать унивирсальную архитектуру.
Другим вариантом является использование других архитектур для уменьшения размера инструкций.
Яркий пример: ARM со своим Thumb, MIPS с MIPS16.
Техники применяемые в GPU
В видеокартах часто встречается много ядер и из-за этой особенности появилась потребность в дополнительных решениях. Если конвейеры можно встретить даже в микроконтроллерах то решения используемых в GPU встречаются редко. Например Masked Execution (Встречается в инструкциях ARM, но не в Thumb-I/II). Еще есть другие особенность: это уклон в сторону Floating Number (Числа с плавающей запятой), Уменьшение производительности в противовес большего количества ядер и т.д.
Masked Execution
Данный режим отличается от классических тем, что инструкции исполняются последовательно без использования прыжков. В инструкции хранится некоторое количество информации о том при каких условия эта инструкция будет исполнена и если условие не соблюдено то инструкция пропускается.
Ответ прост! Что бы не нагружать шину инструкций. Например в видеокартах можно загрузить тысячи ядер одной инструкцией. А если бы использовалась система прыжков то пришлось бы для каждого ядра ждать инструкцию из медленной памяти. Кеш частично решает проблему, но все еще не решает проблему полностью.
Прочее
Здесь мы будем описывать несколько техник используемых в центральный процессорах и микроконтроллерах.
Прерывания
Прерывания это техника при которой исполняемый в данный момент код приостанавливается для выполнения какой-то другой задачи при каких-то условиях. Например при доступе в несуществующий участок памяти вызывается HardFault или MemoryFault прерывания или исключения. Или например если таймер отсчитал до нуля. Это позволяет не бездействовать пока нужно ждать какое-то событие.
Какие недостатки? Вызов прерывания это несколько тактов простоя и несколько при возврате из прерывания. Так же несколько инструкций в начале кода будет занято инструкциями для Таблицы прерываний.
Exception (исключения)
Но кроме прерываний еще существуют исключений которые возникают например при деления на ноль. Зачастую его совмещают с прерываниями и системными вызовами, как например в MIPS. Исключения не всегда присутствуют в процессоре например как в AVR или младших PIC
Системные вызовы
Системные вызовы используется в Операционных системах для того, чтобы программы могли общаться с операционной системой например просить ОС прочитать файл. Очень похоже на прерывания. Аналогично исключениям не всегда присутствуют в процессоре
Контроллеры доступа в память и прочие методы сдерживания программ
Здесь описываются методы запрета доступа приложений к аппаратуре напрямую.
Привилегированный режим
Это режим в котором стартует процессор. В таком режиме программа или ОС имеют полный доступ к памяти в обход MMU/MPU. Все программы запускаются в непривилегированном режиме во избежания прямого доступа к аппаратным подсистемам программ для этого не предназначенных. Например вредоносным программам. В Windows ее часто называют Ring-0, а в *nix — системным. Не стоит путать Привелигированный пользователь и Привилегированный режим ибо в руте вы все еще не можете иметь прямой доступ к аппаратуре (можно загрузить системный модуль который позволит это сделать, но об этом чуть позже 🙂
MPU и MMU
MPU и MMU используется в современных системах чтобы изолировать несколько приложений. НО если MMU позволяет «передвинуть» память то MPU позволяет только блокировать доступ к памяти/запуск кода в памяти.
PIC (PIE)
Что такое PIE? (PIC не использую для избежания путаницы с МК PIC). PIE это техника благодаря которой компилятор генерирует код который будет работать в любом месте в памяти. Эта техника в совмещении с MPU позволяет компилировать высокие языки программирования которые будут работать и с MPU.
Популярная техника SIMD используется для того, что бы за один такт выполнять несколько действий над несколькими регистрами. Иногда бывают в качестве дополнений к основной архитектуре, например, как в MIPS, ARM со своими NEON/VFP/etc, x86 со своим SSE2.
Reposition for Optimization
Это техника Используется для оптимизации кода, генерируемого компилятором, с помощью пересортировки инструкций, увеличивая производительность процессора. Это позволяет использовать конвейер на полную.
Status register
Что такое регистр статуса? Это регистр который хранит состояние процессора. Например находится ли процессор в привилегированном режиме, чем закончилась операция последнего сравнения.
Используется в связке с Masked Execution. Некоторые разработчики специально исключают регистр статуса ибо он может являться узким местом как поступили в MIPS.
В MIPS нет отдельной инструкции загрузки константы в память, но есть инструкция addi и ori которая позволяет в связке с нулевым регистром ($0) эмулировать работу загрузки константы в регистр. В других архитектурах она присутствует. Я затронул эту тему, потому что она пригодиться нам в статьях с практикой.
Rd, Rs vs Rd, rs, rt
Идут множество споров насчет того сколько должно быть операндов в арифметических инструкциях. Например в MIPS используется вариант с 3-мя регистрами. 2 операнда, 1 регистр записи. С другой стороны, использование двух операндов позволяет сократить код за счет уменьшения размера инструкции. Пример совмещения является MIPS16 в MIPS и Thumb-I в ARM. В плане производительности они практически идентичны (Если исключать размер инструкции как фактор).
Endianness
Порядок байт. Возможно вам знакомы Выражения Big-Endian и Little-Endian. Они описывают порядок байт в инструкциях/в регистрах/в памяти/etc. Здесь думаю все просто :). Есть процессоры которые совмещают режимы, как MIPS, или которые используют одну систему команд, но имеют разный порядок байт, например ARM.
Битность процессора
Итак, что такое битность процессора? Многие считают, что это битность шины данных, но это не так. Почему? В ранние переоды микроконтроллеров и микропроцессоров шина могла быть, например, 4-х битной, но передавала пакетами по 8 бит. Для программы казалось, что это 8-и битный режим, но это была иллюзия, как и сейчас. Например, в ARM SoC-ах часто применяют 128-и битную шину данных или инструкций.
Сопроцессоры
Что такое сопроцессоры? Сопроцессоры являются элементами процессора или внешней микросхемой. Они позволяют исполнять инструкции, которые слишком громоздки для основной части процессора. Как яркий пример, сопроцессоры в MIPS для деления и умножения. Или например 387 для 80386, который добавлял поддержку чисел с плавающей запятой. А в MIPS сопроцессоров было много и они выполняли свои роли: контролировали прерывания, исключения и системные вызовы. Часто сопроцессоры имеют собственные инструкции и на системах, где этих инструкций нет, (пример ARM) эмулируют ее через Trap-ы (ловушки?). Несмотря на костыльность и маленькую производительность, они часто являются единственным выбором в микроконтроллерах.
Атомарность операций
Атомартность операций обеспечивает потоко-независимое исполнение за счет инструкций, которые выполняют несколько действий за один псевдотакт.
Вариант другого решения атомарность переферии. Например для установки ножки в STM32 в высокое и низкое состояние используется разные регистры, что позволяет иметь атомарность на уровне переферии.
Вы, навярняка, слышали о L1, L2, L3 и регистрах. Если коротко, процессор анализирует часть кода, чтобы предугадать прыжки и доступ в память и зараннее просит кеш получить эти данные из памяти. Кеш зачастую бывает прозрачным для программы, но бывают и исключения из этого правила. Например, в программных ядрах в ПЛИС используется програмный кеш.
И вы кончено слышали о такой вещи, как Cache Miss или промах по кешу. Это операция которая не была предусмотрена процессорам или процессор не успел закешировать эту часть памяти. Что достаточно часто является проблемой замедления доступа к памяти. Промах проходит незаметно для программы, но не останутся незаметными просадки в производительности.Так же переключения контекстов например при прерываниях тоже заставляет страдать кеш ибо небольшой код сбивает конвейер и кеш для собственных нужд.
Shadow Registers
В современных процессорах часто используется техника теневых регистров. Они позволяют переключаться между прерываниями и пользовательским кодом практически без задержек связанных с сохранением регистров.
Stack
Спросите тогда что такое куча (Heap)? Куча это память размером намного больше чем стек (Стек обычно
1MB). В хипе храниться все глобальное. Например все указатели полученные с помощю Malloc указывают на часть куча. А указатели хранятся в стеке или в регистрах. С помощью инструкций загрузки данных относительно регистра можно ускорить работу стека и других доступов к памяти по типу стека, поскольку не нужно постоянно использовать операции PUSH/POP, INC/DEC или ADDI, SUBI (добавить константу), чтобы получить данные глубже по стеку, а можно просто использовать доступ относительно стека с отрицательным смещением.
Регистры
Не буду описывать регистры слишком подробно. Это мы затронем в практической статье.
В x86 регистров достаточно мало. В MIPS используется увеличенное количество регистров, а именно 31 ($0 имеет значение всегда равное нулю). В процессоре университета Беркли использовались регистровые окна, которые жестки ограничивали вложенность функций, при этом имея лучшую производительность. В других же, таких как AVR, ограничили использование регистров. Для примера: три 16-битных можно трактовать как шесть восьмибитных, где первые 16ть недоступны при некоторых операциях. Я считаю, что лучший метод был выбран MIPS-ом. Это мое сугубо личное мнение.
Выравнивание
Что такое выравнивание? Оставлю-ка я этот вопрос вам 🙂
Конец
Это конец первой главы нулевой части. Вся серия будет крутиться вокруг темы создания собственного процессора. Собственной операционной системы. Собственного ассемблера. Собственного компилятора и много чего другого.
Эволюция процессоров. Часть 4: архитектура RISC и развитие индустрии в 1990-е годы
Создание архитектуры RISC
Как уже неоднократно упоминалось, все х86-процессоры, решения компании Motorola и подавляющее большинство выпущенных в 1980-е годы кристаллов имели архитектуру CISC (Complex Instruction Set Computing). Совокупность всех особенностей привела к тому, что чипы стали не только сложными и дорогими в производстве, но и достигли своего потолка производительности. Для дальнейшего увеличения быстродействия требовалось наращивать количество транзисторов, однако освоенные технологические нормы не позволяли создавать более сложные решения. С этим столкнулась Intel при выпуске семейства i486. Для поднятия производительности они внесли изменения в архитектуру процессоров, добавив кэш-память, множители и конвейеры. Словом, 486-е «камни» получили некоторые «фишки» архитектуры RISC. Тем не менее к созданию RISC-платформы американская компания никакого отношения не имеет. Своим созданием архитектура обязана американскому инженеру Дэвиду Паттерсону, который руководил проектом Berkeley RISC с 1980 по 1984 годы.
Дэвид Паттерсон — отец RISC
Первоначальной идеей, которая затем воплотилась в столь масштабный проект Berkeley RISC, стало исследование работы Motorola 68000. В ходе наблюдений выяснилось, что программы попросту не использовали подавляющее большинство инструкций, заложенных в процессор. Например, система Unix при компиляции использовала лишь 30% команд. Поэтому в рамках проекта Berkeley RISC планировалось создать такой процессор, который бы содержал лишь самые необходимые инструкции.
После нескольких лет исследований и разработки было выпущено несколько образцов процессоров, название которых и дало имя всей архитектуры. Сама аббревиатура RISC расшифровывается как Restricted (Reduced) Instruction Set Computer, что переводится как «компьютер с сокращенным набором команд». «Сокращенный набор команд» вовсе не означает, что количество инструкций меньше, чем число команд CISC-кристаллов. Разница состоит в том, что любая инструкция платформы RISC является простой и выполняется за один такт (по крайней мере, должна выполняться), тогда как на выполнение CISC-инструкции могло уходить несколько десятков тактов. При этом длина команды является фиксированной. Например, 32 бита. Также у RISC имеется гораздо больше регистров общего назначения. Плюс для этой архитектуры характерна конвейеризация. Именно ее использование (вкупе с упрощенными командами) позволяет эффективно наращивать тактовую частоту процессоров RISC.
Команда проекта Berkeley RISC
Дебютными решениями стали RISC I и RISC II — детища Паттерсона и проекта Berkeley RISC. Первый содержал более чем 44 000 транзисторов и работал на частоте 4 МГц. Такой процессор при выполнении небольших программ был в среднем в два раза быстрее VAX 11/780 и примерно в четыре раза производительнее, чем «камень» Zilog Z8000. RISC II отличался от предшественника большим количеством инструкций: 39 против 32. Он был более быстрым. Его преимущество над процессором VAX достигало 200%, а Motorola 68000 в некоторых программах был медленнее примерно в четыре раза.
Нужно отметить, что Berkeley RISC был частью большого проекта под названием VLSI. Сюда также входил проект Стэнфордского университета MIPS, который стартовал в 1981 году.
Процессоры MIPS
Главой проекта MIPS был ученый Стэнфордского университета Джон Хэннесси. Как и в случае с Berkeley RISC, задачей стартапа было исследование и создание такого процессора, который использовал бы конвейер и сокращенный набор команд. Архитектура MIPS-решений также предусматривала наличие вспомогательных блоков в составе кристалла: например, модулей для работы с памятью, целочисленного АЛУ (арифметико-логическое устройство) и декодеров команд. Отличием плана MIPS от Berkeley RISC было использование удлиненного конвейера. Архитектура RISC, в принципе, предполагает использование конвейера, но Хэннесси пошел дальше и предложил максимально удлинить конвейер в процессоре, то бишь еще больше «раздробить» выполнение одной операции. Такой подход открывал еще большие просторы по наращиванию тактовой частоты. При этом удлинение конвейера обеспечивало более эффективное распараллеливание выполнения команд. В то время распараллеливание являлось отличительной чертой RISC-архитектуры, поскольку ни в одном CISC-процессоре эта функция не была реализована вплоть до появления в них конвейеров. Например, в MIPS, так же как и в RISC, выполнение одной команды могло быть еще не завершено, когда начиналась выполняться другая. В процессорах CISC для старта выполнения одной инструкции было необходимо, чтобы была окончена обработка другой.