Что такое quantum dot в qled телевизорах
Что такое quantum dot в qled телевизорах
Установите этот флажок, чтобы перейти на веб-сайт Samsung.com.
Добро пожаловать на официальный сайт Samsung. Откройте для себя мир инновационной электроники, включающей телевизоры, смартфоны, планшеты, технику для кухни и многое другое.
Помогите нам составить для вас рекомендации. Для этого обновите настройки продукта.
Что такое
QLED ТВ?
Хотите узнать, что такое телевизор QLED и как работает технология квантовых точек? Давайте разбираться.
Что такое QLED ТВ и квантовые точки?
Что же такое квантовые точки?
В чем уникальность
телевизоров QLED?
Давайте посмотрим, как яркость влияет на цвет.
Вот пример: в спектре красного цвета может умещаться множество самых разных оттенков красного. Телевизоры QLED хороши тем, что
они наиболее полно воспроизводят все многообразие этих оттенков. Уникальная технология QLED в сочетании с другими технологиями
передачи оттенков обеспечивает высочайшее качество изображения и его максимальную реалистичность по сравнению с другими
телевизорами.
Что такое телевизор QLED и как работает подсветка на квантовых точках
Содержание
Содержание
QLED — одна из относительно новых тем в телевизионной технике, активно продвигаемая и рекламируемая компанией Samsung. Она, по словам маркетологов, является новой технологией, обеспечивающей «100% цветовой объем, измеренный в соответствии со стандартом DCI-P3». Что это такое — маркетинговая уловка или на самом деле полезная вещь для получения качественного изображения? И чем хуже, например, NanoCell, которую продвигает LG?
Начнем с того, что слова о том, что QLED является «новой технологией» — это в некотором роде маркетинговая уловка. На самом деле это развитая и улучшенная технология всё тех же ЖК-экранов. И по большому счету NanoCell от LG или Triluminos от Sony являются похожей технологией подсветки ЖК-матрицы. Но, тем не менее, когда маркетологи говорят об улучшении цветового диапазона, яркости и в целом качества изображения — они тоже правы. QLED-подсветка экрана для простого покупателя на самом деле интересна и привлекательна сочной, цветной картинкой. Как удается ее получить, мы сейчас разберемся.
Как работает обычная LED-подсветка ЖК-экрана
Для того, чтобы понять, что хорошего в QLED, надо сначала разобраться с тем, как работает обычный ЖК-экран.
Обычный LCD-экран (ЖК-экран) представляет собой слоеную конструкцию, основным узлом которой являются жидкие кристаллы. Сами жидкие кристаллы светить не умеют. Свет на них надо подавать. В старых экранах это делается так. Сзади располагается светодиодная матрица, светящаяся постоянным белым цветом неизменной яркости. Свет от нее попадает на рассеивающий слой, и, пройдя через него, — на матрицу из жидких кристаллов.
Эти кристаллы имеют небольшие размеры: один элемент — один пиксель. При этом у каждого элемента-пикселя есть по три субпикселя с разными светофильтрами — красного, синего и зеленого цвета. Каждым светофильтром управляет свой транзистор, обеспечивая пропускание светового потока с определенной яркостью. Комбинация из трех световых потоков разной яркости и цвета формирует цвет каждого конкретного пикселя.
Принцип работы QLED-подсветки
При создании новой системы подсветки инженеры поменяли способ передачи света от источника (светодиодов) к жидким кристаллам. Вместе с новым способом появилась аббревиатура QLED — маркетинговое название новой технологии подсветки. Первая буква в новом названии, придуманном маркетологами Samsung, появилась от словосочетания «Quantum Dot» («квантовая точка»). Именно в них заключается главная особенность новой конструкции. В ней появился дополнительный «посредник» в передаче света от источника к ЖК-матрице. Причем этот «посредник» — квантовые точки — также излучает свет.
QLED-подсветка работает по следующему принципу:
Светодиодная подсветка, расположенная в задней части экрана, излучает световой поток постоянной величины. Обычно этот поток имеет синий цвет.
Световой поток поступает на слой, содержащий квантовые точки. Особенность квантовых точек заключается в том, что под воздействием света они возбуждаются и также начинают излучать свет определенной длины волны (цвета). Цвет светового потока, излучаемый квантовой точкой, зависит от ее размера. Например, точка размером 2 нм светится голубым, 3 нм — зеленым, а 6 нм — красным. В слое квантовых точек используются элементы, излучающие зеленый и красный цвета.
Световые потоки поляризуются и смешиваются, формируя из синего, зеленого и красного цветов белый, который поступает на ЖК-матрицу.
Далее в ЖК-матрице, как и в LED-экране, формируется цвет каждого пикселя с помощью трех субпикселей и управляющих транзисторов. А зритель видит более яркое и сочное изображение.
Казалось бы, отличия от классической технологии не так велики — принцип работы экрана остается тем же. Но есть важное отличие — белый свет подсветки не проходит через фильтры и, соответственно, не теряет интенсивность. Вместо этого добавляется дополнительный световой поток. Это положительно сказывается на диапазоне регулировки яркости и качестве цветопередачи. Изображение становится намного ярче.
Недаром маркетологи так любят говорить о режиме HDR в QLED-телевизорах и высокой степени детализации в темных или слишком ярких сценах. Это на самом деле верно, так как когда света больше, есть что регулировать, формируя красивую картинку.
Чем хороши QLED-телевизоры для простого зрителя
Все тонкости прохождения света интересны для простого зрителя в первую очередь тем, что он получит, заплатив достаточно большую сумму за новый телевизор. Стоит ли тратиться на QLED-телевизор?
Вообще-то, да. Причины выбрать телевизор с экраном на квантовых точках есть. Они:
Технология LG NanoCell. Есть ли отличия от QLED
Разумеется, не только Samsung предлагает решения для улучшения качества изображения. Работает в этом направлении и один из его главных конкурентов — компания LG, развивающая свою технологию NanoCell. Сначала новая технология называлась IPS-Nano, но потом, когда в Samsung придумали название QLED, в LG тоже решили, что надо сделать упор на микроминиатюризацию и заострить внимание на «Nano». Так появился термин NanoCell.
LG не слишком распространяется о подробностях и тонкостях своей технологии. Но из того, что известно о новом техпроцессе, в основе лежит все тот же принцип использования квантовых точек. Только точки имеют другую длину волны — около 1 нм. Квантовые точки с такой длиной волны не дают распространяться световым волнам в диапазоне между зеленым и красным цветом. То есть, убирают «паразитные» лучи, обеспечивая формирование чистого светового потока нужных цветов без примесей. Это позволяет добиться четкой и яркой цветовой картинки.
Также LG заостряет внимание на отличных углах обзора у телевизоров с NanoCell. Но надо понимать, что главную роль в этом играют не столько квантовые точки, сколько то, что в экранах используется IPS-матрица, которая как раз и обеспечивает большие углы обзора.
Есть ли у квантовых точек перспективы
Что будет дальше с квантовыми точками? Получит ли эта технология развитие или всё, что из нее можно получить, инженеры уже выжали? Скорее всего, она продолжит развиваться и дальше.
Дело в том, что изначально разработчики из американской лаборатории QD Vision, которые первыми начали проектировать дисплей на квантовых точках, работали не над системой подсветки, а над экраном на основе квантовых точек. То есть, планировалось создать такой экран, в в каждом пикселе которого в качестве трех субпикселей синего, красного и зеленого цвета будут использоваться квантовые точки. Это напоминает OLED-технологию, в которой каждый пиксель — органический светодиод, излучающий свет самостоятельно, без подсветки.
Пока создать такой экран для коммерческого использования не получилось: возникла проблема выгорания квантовых точек при продолжительной эксплуатации. Но работы в данном направлении продолжаются. Ими занимаются исследователи из QD Vision и инженеры Samsung. Не исключено, что в скором будущем нам предложат еще более интересные модели телевизоров с экранами, в которых квантовые точки используются уже не для подсветки, а для формирования изображения на экране.
Телевизоры QLED: что это такое, чем они хороши и стоит ли их покупать?
Что означает аббревиатура QLED?
Все просто: Q – означает «quantum dots» или «квантовые точки», а LED – это «light-emitting diode» или, проще говоря, привычный всем нам жидкокристаллический экран со светодиодной подсветкой.
Если вы читаете эту статью с монитора или экрана ноутбука, выпущенного после 2010 года, то скорее всего смотрите именно на LED-дисплей. Получается, что когда вам говорят о QLED, то речь идет просто о новой технологии производства ЖК-экранов.
Что такое квантовые точки?
Квантовые точки – это нанокристаллы, которые в зависимости от размера могут светиться определенным цветом. При производстве матриц, конечно же, нужны красные, зеленые и синие точки. Вы же помните, что именно из этих трех составляющих в диапазоне RGB (Red, Green, Blue) складываются все остальные цвета?
Слово «квантовый» явно намекает на то, что описываемые излучатели настолько крошечные, что увидеть их можно лишь под очень мощным микроскопом. Для сравнения, размер молекулы ДНК составляет 2 нанометра, в то время как размеры синих, зеленых и красных квантовых точек не превышают 6 нанометров. Можете примерно сопоставить это с обозримой величиной: в среднем толщина человеческого волоса равна 60-80 тысячам нанометров или 0,06-0,08 мм.
Кстати, изобретены квантовые точки были еще в 1981-м году, причем получил их советский физик Алексей Екимов. Затем в 1985-м году американский ученый Луи Брас обнаружил, что эти элементы могут светиться под воздействием излучения, причем цвет свечения зависит от физического размера нанокристалла.
Так почему же мы говорим о квантовых точках только сейчас? Потому что лишь недавно технологии достигли уровня, когда промышленность может получать кристаллы нужного размера с точностью до атома. Первый прототип QLED-экрана представила компания Samsung, и случилось это знаменательное событие в 2011 году.
Как устроена матрица телевизора с квантовыми точками?
QLED – это не новая супертехнология производства особых матриц. Речь здесь идет о добавлении прослойки с нанесенными на нее квантовыми точками между слоем с жидкими кристаллами и светодиодной подсветкой дисплея.
Поглощая излучение синих светодиодов подсветки квантовые точки переизлучают его с четко определенной длиной волны. Так получаются более чистые базовые (те самые синий, зеленый и красный) цвета, чем в обычных LED-матрицах.
При этом из конструкции за ненадобностью исключаются использующиеся в LED-телевизорах светофильтры. Там они нужны для повышения точности отображения цветов, но снижают яркость изображения т.к. проходя через фильтры излучение подсветки преломляется, теряя свою интенсивность. Одновременно с этим падает и насыщенность цветов.
Чем так хороши QLED экраны?
QLED дисплеи устроены таким образом, что при формировании изображения вносится минимальное искажение в структуру света. В итоге удается достичь очень точной цветопередачи: картинка яркая, насыщенная, оттенки ровные, а цветовой охват очень и очень широк.
Если в обычных LED-телевизорах теряется куча деталей в самых светлых и самых темных областях изображения, то QLED их сохраняет и точно передает – отсюда все заявления про поддержку HDR и 10-битный цвет в рекламных материалах. Разумеется, нужно, чтобы и исходник видео, которое вы смотрите, тоже был качественным и детализированным. Это, кстати, большая проблема – подходящих материалов пока очень мало.
Для производства QLED-телевизоров не нужно полностью переоборудовать линии на заводах, ведь речь идет просто о более дорогой и совершенной технологии производства LED-экранов.
Заявлено, что QLED матрицы со временем не выгорают, т.к. они не основываются на органических материалах, как, например, OLED.
QLED и OLED – это одно и то же?
Нет, это принципиально разные технологии.
OLED-экраны базируются на основе углеродных органических материалов. Пиксели в этих матрицах зажигаются определенным цветом благодаря воздействию тока. В итоге здесь нет не только светофильтров, но и подсветки в целом. Собственно, так и получается тот самый «глубокий черный цвет», о котором пишут во всех обзорах. Если пиксель не зажечь, то он будет именно идеально черным.
Технология производства OLED-дисплеев с большими диагоналями сложная и дорогая, а регулярные разговоры о том, что она «вот-вот сильно подешевеет» пока ничем не подкреплены. Экраны с квантовыми точками чуть дешевле уже сейчас и задел на будущее удешевление тоже есть.
Одна из основных претензий к OLED-экранам заключается в том, что со временем такие матрицы выгорают. Это действительно так, но причин для беспокойства нет: прежде, чем недостаток проявится, должны пройти годы. Компания LG, например, заявляет для своих OLED телевизоров срок службы в 10 лет, при условии, что они включены 8 часов в день.
Совершенно точно можно утверждать, что QLED экраны Samsung на данный момент ярче, чем OLED дисплеи LG. В первом случае заявленная пиковая яркость составляет 1500-2000 нит, во втором – лишь 1000 нит. Речь, разумеется, о модельном ряде начала 2017 года.
А вот качество цветопередачи в сравнении – вопрос открытый. Конечно же, Samsung говорит, что квантовые точки круче AMOLED, а LG – ровно наоборот, но независимых тестов еще никто не проводил.
Кстати, если для кого-то это вдруг важно, то QLED телевизоры заметно толще, чем «ящики» с AMOLED.
Сколько стоят QLED телевизоры?
Если вкратце, то очень дорого.
Самый «бюджетный» QLED-телевизор Samsung стоит 140 000 рублей – это 49-дюймовая модель из «младшей» линейки Q7. За 55-дюймовый изогнутый Q8C просят уже 220 000 рублей, а самой дорогой в России на сегодняшний день является 65-дюймовая версия той же самой модели, она обойдется в 330 000 рублей.
Российская стоимость флагманского 75-дюймового Q9 пока не объявлена, но за границей она составляет 10 тысяч долларов. Впрочем эта и другие цены на QLED-телевизоры Samsung абсолютно сопоставимы с ценами на OLED-телевизоры LG в аналогичных диагоналях. Не секрет, что именно между двумя этими корейскими компаниями идет особо острая конкуренция в премиальном сегменте.
Покупать QLED или нет?
Если вы невероятно сильно любите телевизоры премиум-класса с наилучшей картинкой, то есть смысл дождаться появления QLED телевизоров Samsung в магазинах и самому сравнить их качество с OLED от LG.
Хотелось бы дать вам конкретный ответ на этот вопрос, но мы пока о разнице в качестве изображения объективно судить не можем. Безусловно, в демо-зонах на презентациях Samsung расклад был явно не в пользу OLED, но какие именно «безымянные модели конкурентов» использовались в сравнительных демонстрациях и с какими именно настройками – история умалчивает.
Впрочем, в том, что QLED как минимум не хуже, чем самые лучшие представители OLED, сомневаться точно не приходится.
Кстати, матрицы с квантовыми точками Samsung использует не впервые: в 2015 и 2016 годах корейцы выпустили два первых поколения QLED-экранов, только тогда они носили зубодробительное и непонятное название SUHD. Новые QLED 2017-го года сильно отличаются от них в лучшую сторону – и по яркости, и по цветопередаче, и по динамическому диапазону.
QD-телевизор — или почему квантовые точки так важны для телевизора
Квантовые точки – новый уровень качества картинки или уловка маркетинга?
QD-телевизор — или почему квантовые точки так важны для телевизора
Квантовые точки – новый уровень качества картинки или уловка маркетинга?
LED, QLED, OLED, microLED – в многообразии технологий формирования изображения в телевизорах сегодня очень просто запутаться. Этому способствуют и производители – аббревиатуры OLED и QLED графически похожи совсем не случайно – маркетологи свой хлеб едят совсем не зря. Но если про OLED за годы развития этой технологии накопилось достаточно много информации, то нюансы QLED и использования квантовых точек пока не столь очевидны. Попробуем в этом разобраться.
Светодиоды и различное их применение
Всё многообразие технологий, актуальное для современного телевизора, имеет в своих названиях LED – аббревиатуру от Light Emitting Diode, или просто «светодиод». В начале века была конкурирующая технология формирования изображения – так называемая «плазма», но не выдержав конкуренции она осталась в истории, напоминая о себе лишь изредка встречающимся жаргонным названием любого плоского телевизора. Итак, все современные телевизоры используют светодиоды как источники света. Но делают они это по-разному. Самая заслуженная технология – LED. Фактически, это обычный жидкокристаллический телевизор с подсветкой на основе белых светодиодов, которые могут располагаться как по периметру экрана, так и по всей его площади. Цветное изображение достигается в результате применения фильтров разного цвета.
Иной принцип предлагают технологии OLED и microLED. Здесь светодиоды непосредственно формируют картинку. То есть, триада таких диодов (субпикселей основных цветов – RGB) образуют реальный пиксель на экране. Главным отличием от других технологий формирования изображения является то, что в панелях OLED и microLED отсутствует подсветка. В результате такие экраны обеспечивают не только натуральную цветопередачу и широкий цветовой охват, но и способны формировать абсолютный чёрный цвет – другими словами, в темном участке экрана обеспечить нулевой уровень излучения. С использованием подсветки такого результата достичь невозможно.
Технология OLED (Organic Light Emitting Diode) использует органические светодиоды, а microLED – неорганические, имеющие ряд преимуществ. В частности, неорганические светодиоды способны обеспечить существенно более высокую яркость, более широкий цветовой охват и более высокую стабильность работы. Неорганические светодиоды не подвержены «выгоранию», поддерживают высокие частоты обновления картинки и отличаются низким временем отклика, выражаемом в наносекундах. Вишенкой на торте станут большие углы обзора экранов microLED и существенно меньшее в сравнении с OLED и ЖК-телевизорами энергопотребление. В общем, у этой технологии практически одни преимущества. Сдерживает её распространение тот факт, что это самая молодая технология, которая должна пережить проблемы роста и решить ряд технологических проблем производства таких экранов. Ну и пока такие телевизоры очень дороги, что неудивительно для аппаратов, базирующихся на совсем свежей технологии.
QLED – подсветка, но иная
Прежде чем перейти к технологии QLED, нужно определить, что такое «квантовые точки», на которых эта технология базируется. Квантовая точка – это полупроводниковый кристалл, свойства которого зависят от его размера. Такой кристалл способен излучать свет под воздействием электрического тока или света. Чтобы достичь выраженного квантово-размерного эффекта, этот кристалл должен быть очень малого размера. От размера зависит энергия испускаемого света, которая определяет цветовой оттенок свечения. Если такие квантовые точки равномерно нанести на тонкую пленку, которую подсветить внешним источником, то эта пленка будет люминесцировать. Учитывая то, что размер таких кристаллов контролировать достаточно просто, легко получать точные цветовые оттенки. Такие люминесцирующие покрытия назвали QDEF (Quantum Dot Enhancement Film).
В технологии QLED, предложенной компанией Samsung Electronics, а также в родственных технологиях NanoCell от LG Electronics, Triluminos от Sony или ULED от Hisense, квантовые точки используются в подсветке ЖК-экрана. В подсветке здесь работают не белые, а синие светодиоды гораздо большей, чем в обычных LED-телевизорах мощности, что позволяет достигать гораздо большей яркости. Особенно это качество QLED-телевизоров будет полезным для демонстрации видео с расширенным динамическим диапазоном HDR, предъявляющего особые требования к пиковым значениям яркости устройства отображения. Выбор именно синих светодиодов для подсветки QDEF обусловлено тем фактом, что для излучения синего света требуются квантовые точки наименьшего размера – около 2 нм (15 атомов) в диаметре. Для сравнения, размер красных квантовых точек составляет 7 нм (150 атомов), а зелёных – 3 нм (30 атомов). Из-за малых размеров синие квантовые точки неустойчивы и сложны и в производстве, и в эксплуатации.
Использование квантовых точек в подсветке позволяет достигать большего цветового охвата, вплотную приближающегося к стандарту DCI-P3. Другими словами, квантовые точки обеспечивают гораздо лучшую насыщенность и глубину цветов. Тем не менее, все же, подсветка остается подсветкой – потому по глубине чёрного цвета, а значит – по контрастности, экраны на квантовых точках уступают дисплеям OLED и microLED.
Краеугольный камень богатой цветовой палитры – источник правильного света
На одном моменте хотелось бы остановиться подробнее. Как отмечалось выше, в подсветке обычных LED-телевизоров используются белые светодиоды. Для получения корректной цветопередачи с широким цветовым охватом необходимо, чтобы источник обеспечивал свечение, пропустив которое через призму получался бы радужный спектр с компонентами одинаковой интенсивности. Проблема в том, что белый светодиод не может обеспечить такое излучение. В реальности у светодиодов весьма узкий цветовой спектр, а белый цвет чаще всего достигается применением люминофоров с добавкой желтой компоненты. Но даже эти меры не дают идеального результата – после призмы излучение таких диодов дает разные по интенсивности цветовые компоненты. Например, яркость красной составляющей оказывается меньше двух других. Чтобы скомпенсировать этот дисбаланс, приходится в настройках уменьшать яркость зелёного и синего компонентов, что приводит к общему снижению яркости картинки.
Факт | Экраны на квантовых точках унаследовали основной недостаток жидкокристаллических телевизоров – собственно, жидкие кристаллы, работающие «на просвет», которые не способны полностью блокировать проходящее через них излучение. Другими словами, в отличие от OLED и microLED телевизоров, абсолютного чёрного цвета они не дадут. |
Использование квантовых точек в подсветке помогает во многом решить эту проблему. Упрощенно источник света с квантовыми точками представляет собой тонкую пленку с нанесенным покрытием из квантовых точек QDEF, генерирующих зеленый и красный цвет. Важно подчеркнуть – квантовые точки на этом покрытии тщательно перемешаны. Если такую пленку подсветить синими светодиодами, то в результате смешения трех основных цветовых составляющих мы получим источник белого света, по характеристикам близкий к идеальному. Качественный белый свет, получаемый от подсветки, позволяет достичь натуральной цветопередачи, поскольку для этого нет необходимости проводить никаких искусственных настроек, которые искажают спектр. Бонусом мы получаем высокую яркость картинки.
Технологии формирования изображения, использующие QD (Quantum Dot), стали следующей ступенью развития жидкокристаллических телевизоров. Квантовые точки позволили существенно улучшить качество подсветки и, как следствие, добиться ощутимо лучшей цветопередачи, более широкого цветового охвата и гораздо большей яркости картинки. При этом, недостатки ЖК-технологии, такие как недостаточная глубина чёрного цвета, квантовые точки не устраняют. С нетерпением ждем следующего года, когда компания Samsung обещала представить телевизоры, базирующиеся на новой технологии QD-OLED. Суть инновации пока не обнародована, но название определенно интригует.