Что такое power factor на ваттметре
Что такое коэффициент мощности (power factor, PF)
Что такое коэффициент мощности (power factor, PF)
Коэффициент мощности при нелинейных нагрузках
Реактивная составляющая даёт только один из видов нелинейных искажений (фазовый сдвиг). Однако коэффициент мощности реагирует на любую нелинейность нагрузки (нелинейность ВАХ), когда ток меняется непропорционально приложенному напряжению. Например, коэффициент мощности нагрузки, которая представляет собой последовательно соединённые диод и обычный резистор, составляет около 0,71. Здесь нет никакой реактивной нагрузки, просто нелинейная ВАХ диода приводит к уменьшению коэффициента мощности.
В случае активной нелинейной нагрузки коэффициент мощности определяется отношением активной мощности первой гармоники тока к полной мощности, потребляемой нагрузкой (это определение справедливо только в частном случае, когда напряжение имеет чистую синусоидальную форму).
Некоторые нагрузки могут значительно искажать и форму напряжения.
В случае несинусоидального тока уже следует рассматривать неактивную мощность, состоящую (как минимум) из реактивной и мощности искажения (зависит от коэффициента искажения кривой тока).
PF большинства потребителей меняется в зависимости от их режима работы (как правило он меньше на холостом ходу и выше при номинальной нагрузке)
Коэффициент мощности – Power Factor (PF)
Коэффициент мощности. Power Factor (PF). Смещённый коэффициент мощности. Displacement Power Factor (DPF).
Power Factor (PF) – коэффициент мощности – англ.
Displacement Power Factor (DPF) – смещенный коэффициент мощности – англ.
Коэффициент мощности – это комплексный показатель, характеризующий линейные и нелинейные искажения формы тока и напряжения в электросети, обусловленные влиянием нагрузки (например, ИБП).
Вычисляется как отношение поглощаемой нагрузкой активной мощности к полной.
Типовые значения коэффициента мощности:
В случае линейной нагрузки коэффициент мощности равен косинусу угла сдвига между током и напряжением и в зависимости от характера нагрузки может носить емкостной или индуктивный характер.
В случае активной нелинейной нагрузки коэффициент мощности определяется отношением активной мощности первой гармоники тока к полной мощности, потребляемой нагрузкой (это определение справедливо только в частном случае, когда напряжение имеет чистую синусоидальную форму).
Необходимо заметить, что реальная промышленная нагрузка является нелинейной и носит преимущественно индуктивный характер (PF=0.8).
Терминология, используемая в измерительных приборах (например, анализаторе HIOKI3197)
Если коэффициент мощности характеризует процессы в цепи с несинусоидальными сигналами, то могут применяться два различных термина обозначающих коэффициента мощности:
Power Factor (PF) – коэффициент мощности. Вычисляется с использованием среднеквадратичных значений (СКЗ) всех гармоник сигнала.
Displacement Power Factor (DPF) – смещённый коэффициент мощности. Вычисляется с использованием среднеквадратичных значений (СКЗ) только основной (первой / фундаментальной) гармоники сигнала. То есть он равен косинусу (cos) фазового сдвига между током и напряжением основной гармоники.
PF=DPF при гармонических (синусоидальных) сигналах.
Коэффициент мощности несинусоидальных токов и напряжений
Коэффициент мощности токов и напряжений, в которых присутствуют гармонические (нелинейные) искажения, вычисляется так же как и в случае синусоидальных сигналов (см. «Г.И. Атабеков Основы Теории Цепей» с.176, 434 с):
Коэффициенты, характеризующие периодические несинусоидальные функции. По аналогии с гармоническими функциями отношение активной мощности при несинусоидальных токах к полной мощности называется коэффициентом мощности и обозначается χ:
Планируется размещение дополнительных статей с рабочими названиями:
«Коэффициент мощности. Дополнения».
PF, DPF
Если коэффициент мощности характеризует процессы в цепи с несинусоидальными сигналами, то могут использоваться два различных термина обозначающих коэфф. мощности:
PF – Power Factor или Коэфф. Мощности вычисляется с использованием СКЗ значений всех гармоник сигнала.
DPF – Displacement Power Factor или Смещённый Коэфф. Мощности вычисляется с использованием СКЗ значения только основной (т.е. первой или фундаментальной) гармоники. Тоесть он равен косинусу разницы фаз между током и напряжением основной гармоники.
Для случая синусоидальных сигналов PF=DPF.
Эта терминология используется например в анализаторе HIOKI3197.
Ваттметр
Что такое ваттметр
Думаю, все вы курсе, что электрический ток может выполнять работу. Например, вскипятить воду в электрочайнике, перемолоть кофе в кофемолке, согреть курицу в микроволновке и так далее. Все эти бытовые приборы являются нагрузкой для домашней сети. Но, как вы знаете, некоторые приборы «крутят» счетчик очень быстро, а некоторые приборы почти не потребляют электрический ток.
Если включить чайник и лампочку накаливания в вашей комнате и оставить на час, то чайник «съест» электроэнергии намного больше, чем та же самая лампа накаливания. Дело в том, что чайник обладает большей мощностью, чем лампочка. В этом случае можно сказать, что мощность чайника будет больше, чем мощность лампы в единицу времени, например, за секунду. Чтобы точно измерить, во сколько раз чайник потребляет электрической энергии больше, чем лампочка, нам нужно измерить мощность чайника и лампочки.
Ваттметр — это прибор, который измеряет потребляемую мощность какой-либо нагрузки. Выделяют три группы ваттметров:
Так как наш сайт посвящен электронике и электротехнике, то мы будем в этой статье рассматривать только ваттметры постоянного тока и низкой частоты. Под низкой частотой подразумевается частота в 50-60 Герц.
Мощность постоянного тока
Итак, вы уже все в курсе, что любая нагрузка для электрического тока потребляет какую-либо мощность. Мощность постоянного тока выражается формулой:
P — это мощность, которая выражается в Ваттах (Вт,W)
I — сила тока, которую потребляет нагрузка, выражается в Амперах
U — напряжение, которое подается на нагрузку, выражается в Вольтах
Поэтому, чтобы найти мощность какой-либо нагрузки, которая подсоединена к постоянному току, достаточно перемножить значение силы тока и напряжения. Например, на этом фото мы видим вентилятор от компьютера, который подцепили к лабораторному блоку питания. Его мощность, как не трудно догадаться, составила P=IU=0,18 Ампер x 12 Вольт =2,16 Ватт.
Ваттметры для постоянного тока
Вы ведь не будете каждый раз таскать с собой громоздкий блок питания или два мультиметра, которые будут измерять и ток и напряжение? Поэтому, в настоящее время ваттметры представляют из себя законченные приборы, которые очень легко соединяются с потребляемой нагрузкой. На Алиэкспрессе я находил вот такие ваттметры для постоянного тока, которые показывают сразу и ток, и напряжение, и потребляемую мощность нагрузки. К проводам, где написано SOURCE цепляем источник постоянного тока, а к проводам LOAD цепляем нагрузку. Все элементарно и просто!
Некоторые из них идут в комплекте со шунтом
Схема подключения источника постоянного тока и нагрузки в таком ваттметре выглядит так
Ну и самый бюджетный вариант — это взять ампервольтметр и просто умножать значения тока и напряжения
Вот такой вольтамперметр рассчитан на максимальные параметры 100 Вольт и 50 Ампер. То есть, теоретически, он может измерять мощность до 5 кВт.
Мощность переменного тока
Мощность переменного тока вычисляется по формуле:
I — сила тока, Ампер
U — напряжение, Вольты
cos φ — коэффициент мощности
Что еще за косинус фи? И что он вообще означает? Есть такие радиоэлементы как конденсаторы, катушки индуктивности, трансформаторы, электромеханические реле различные двигатели и прочие радиоэлементы, которые обладают какой-либо емкостью или индуктивностью.
Если вспомнить осциллограмму переменного напряжения из нашей домашней розетки, то она будет выглядеть вот так:
Если же запитать какую-нибудь нагрузку, типа лампочки накаливания, то у нас в дело пойдет также такой параметр как сила тока. Так как лампочка накаливания не обладает никакой емкостью или индуктивностью, то сила тока у нас будет синфазно меняться с напряжением. Синфазно — это означает одинаково, синхронно. Например, синхронное плавание. Там участники все делают вместе и одинаково.
Так вот, такой параметр как сила тока и напряжение на лампочке тоже действуют синфазно. Ниже красной синусоидой я показал силу тока, которая «бежит» через лампочку:
Видите? Она начинается в этом же месте, где и напряжение. Сила тока достигает максимума, и напряжение тоже достигает максимума в это же самое время, следовательно и мощность в этот момент тоже максимальная (P=IU). Сила тока равняется нулю и напряжение тоже равняется нулю в том месте, где пересекаются эти синусоиды, значит и мощность в этот момент тоже будет равняться нулю.
Но весь прикол в том, что каким-то чудом радиоэлементы, обладающие индуктивной или емкостной составляющей (конденсаторы, катушки, трансформаторы и тд) умудряются сдвигать синусоиду силы тока.
Предположим, будем питать от сети мой трансформаторный блок питания.
И у нас осциллограмма силы тока уже будет принимать примерно вот такой вид:
Что здесь произошло? Так как первичная обмотка трансформатора обладает индуктивностью, то эта самая индуктивность сдвинула осциллограмму силы тока. Более подробно можете прочитать в статье активное и реактивное сопротивление.
В зависимости от значения индуктивной или емкостной составляющей, сила тока может либо опережать либо отставать от напряжения. А чтобы измерить на сколько, для этого в обиход ввели фи ( φ), которая показывает этот сдвиг в градусах.
Короче говоря, не будем рассматривать тригонометрию, скажу просто, что для расчета мощности берут косинус значения этого угла.
Ваттметр цифровой на сетевое напряжение
В гостях у нас китайский ваттметр, приобретенный на распродаже в Алиэкспрессе.
Ну что же, давайте познакомимся с ним поближе.
Первая строка на ваттметре — это часы. Они начинают счет только тогда, когда в розетку ваттметра включена какая-либо нагрузка. Нагрузкой в нашем случае может быть любой электробытовой прибор: утюг, паяльник, светильник и так далее
Строкой ниже, с помощью кнопки «Energy», мы можем выводить параметры электрического сигнала, такие как:
— напряжение (V, Вольт)
— коэффициент мощности (Power Factor) или cos φ (косинус фи,безразмерная величина, то есть измеряется чисто в цифрах)
Третья строка — это расчет стоимости электроэнергии. Измеряется в Киловаттах умноженных на Час (КВатт х час). Самая частая ошибка — это когда пишут кВатт/час. Запомните, там знак не деления, а умножения! Вот за эти киловатт-часы мы и платим денежку провайдерам электрической энергии ;-).
Сейчас никакая нагрузка не включена в розетку ваттметра. Смотрим на дисплей:
Ничего себе, почти 240 вольт.
Можно замерить частоту. 50 Герц — так и должно быть.
Так как в розетке нашего ваттметра нет никакой нагрузки, следовательно и сила тока также будет равняться нулю:
Ну и мощность также будет равняться нулю
Косинус фи и реактивная нагрузка
Например, мой самопальный простой блок питания, включенный в сеть и не питающий никакую нагрузку, все равно потребляет энергию, так как является трансформаторным. Напряжение сразу идет на первичную обмотку трансформатора.
Его не следует оставлять включенным в розетку, так как он все равно хоть и немного потребляет ток.
Включаю свой трансформаторный блок питания в сеть 220 Вольт. Итак, напряжение в розетке 236,8 Вольт:
К блоку питания я подцепил лампочку на 12 вольт. Итого, нагруженный блок питания у нас потребляет 0,043 Ампера.
Power Factor — коэффициент мощности, он же косинус фи. Сейчас он у нас равен 0,42, так как нагрузка индуктивная.
Проверяем все это дело по формуле P=IU cos φ=0,043х236,8х0,42= 4,28 Ватт. Почти все сходится с небольшой погрешностью.
Косинус фи и активная нагрузка
Давайте проведем еще один опыт. Возьмем лампу накаливания на 220 Вольт и подцепим ее через ваттметр в сеть. Так как лампочка накаливания у нас не обладает ни индуктивностью, ни емкостью, то на графике синусоида силы тока и напряжения будет примерно выглядеть вот так. То есть синхронно:
Фи в этом случае равен нулю (сдвига фаз между ними нет). Вспоминаем школьный курс тригонометрии и помним, что косинус нуля — это единичка!
Проверяем на опыте.
Power Factor, он же косинус фи, высвечивает единичку. Все верно!
Замеряем потребляемую силу тока:
Считаем по формуле: P=IU cos φ=0,115х233,5х1= 26,9 Ватт. Все также сходится с небольшой погрешностью 😉
Немного отходя от темы, давайте еще напоследок глянем, какую мощность потребляет светодиодная лампа
Всего 6 Ватт! А светит она даже получше 25 Ваттной, которую я использовал в опытах. Вывод делайте сами.
Где купить ваттметр
О коэффициенте мощности в сетях переменного тока и его влиянии на потребителей
Люди уже давно массово используют сети переменного тока на собственные нужды, ранее в основном связанные с получением тепла и света. В последние десятилетия значительно возросла доля потребления электроэнергии, связанная с питанием мощных устройств, оборудованных импульсными блоками питания. Их задача состоит в преобразовании электрической энергии, поступающей в виде высоковольтного переменного тока в постоянный низковольтный ток.
При выполнении этой работы происходит множество процессов, в ходе которых возникают нелинейные явления, потери, всплески напряжения, а также происходят другие нежелательные явления. Это связано с природой протекания переменного тока, на которую влияет ряд факторов, главным из которых является cos φ (косинус фи) — фактор мощности (Power Factor).
Электрическая мощность расходуется как на активной, так и на реактивной нагрузке, что связано с наличием активного сопротивления проводников/нагрузки, а также наличием реактивных сопротивлений (индуктивности и емкости).
Конечные потребители пользуются только активной составляющей мощности. В обычных условиях влиянием реактивной составляющей пренебрегают, большинство пользователей даже не знают, что таковая имеется. При высоких нагрузках на электрическую сеть, например, при эксплуатации вычислительных устройств для майнинга, влиянием коэффициента мощности пренебрегать не стоит.
В связи с этим стоит разобраться, чему равна потребляемая мощность подключенных к сети переменного тока компьютеров и других устройств, как подсчитывается мощность в цепях постоянного и переменного тока, а также понимать, что такое коэффициент мощности и как работают схемы его коррекции.
Об электрической мощности, расходуемой на нагрузке в цепи с постоянным напряжением
Мощность P в цепях постоянного тока (DC, Direct Current) можно подсчитать, умножив величину проходящего тока I на напряжение U.
Формула, отображающая величину электрической мощности в зависимости от протекающего постоянного тока и напряжения выглядит так:
Диаграмма, показывающая взаимную зависимость мощности, напряжения, тока и сопротивления в цепях постоянного тока:
При необходимости,можно выразить мощность P через сопротивление R и ток I:
либо через напряжение U и сопротивление R:
Для переменного тока (AC, Alternating Current) подсчет мощности значительно сложнее, так как он меняет свою величину и направление с течением времени. Сопротивление нагрузки, питающейся от переменного тока, имеет не только активную составляющую R, но и реактивную, связанную с индуктивными и емкостными явлениями:
Электрическая мощность на нагрузке в цепи с переменным напряжением
Основными характеристиками переменного тока являются напряжение, частота и число фаз.
Осциллограммы (графики) переменного и постоянного токов:
В сети переменного тока величина и направление проходящего тока и напряжения одной фазы постоянно меняются. Постоянный ток можно представить как частный случай переменного тока, когда используется одна фаза, частота в которой равна нулю, а направление движения тока и напряжения совпадают. В цепях постоянного электрического тока направление всегда совпадают.
Графики напряжения (a) и частоты (b) переменного синусоидального тока (a — однофазного, b — трехфазного):
На графике, иллюстрирующем значение переменного напряжения U в зависимости от времени хорошо видно, что оно постоянно меняется по направлению и величине за период времени T, определяющем его частоту.
Векторные и графические изображения переменного напряжения и тока на активной, индуктивной и емкостной нагрузках:
Полная мощность (S), потребляемая из сети переменного тока, геометрически складывается из векторов активной (P) и реактивной (Q) мощностей. Коэффициент мощности является косинусом угла «Фи» между мощностями P и Q.
Коэффициент мощности (power factor) тем хуже, чем больше сдвиг между фазами напряжения и тока (или чем ближе к нулю косинус фи угла между ними для потребителей электрической энергии):
Мощность в сетях переменного тока связана с наличием трех составляющих, характеризующих нагрузку (сопротивление), на которой расходуется электрическая энергия: активным, реактивным и полным сопротивлением.
Активная нагрузка, имеющая сопротивление R — эта величина, связанная с ее активным сопротивлением, которое зависит от сдвига фаз переменного напряжения и тока. Активная мощность для переменного тока P, как и для постоянного тока, измеряется в Ваттах (Вт). Она равна произведению эффективного тока на эффективное напряжение с учетом сдвига их фаз (пропорциональна значению коэффициента мощности cos φ). Чем ближе величина этого коэффициента к нулю, тем больше реактивные потери в цепи и меньше активная мощность. При значении cos φ, равном единице, потери минимальны, весь ток расходуется на активной нагрузке. Если же значение cos φ нагрузки равно минус единице, то она сама генерирует электрический ток, который на 100% отдается в сеть (это может быть электрогдвигатель с раскрученным внешней силой ротором).
Реактивная нагрузка, имеющая сопротивление Х — эта величина образована наличием емкостной (C) и индуктивной (L) составляющих. Реактивное сопротивление Х увеличивается при росте индуктивности хL и уменьшается при росте емкостного сопротивления хc, что выражается формулой х = хL — хc.
Индуктивное сопротивление зависит от емкости и частоты согласно формуле XL = 2πfL, индуктивное сопротивление XC = 1/ 2πfC. Реактивная мощность Q измеряется в вольт-амперах реактивных (ВАр). Она связана с потребляемой/накапливаемой (генерируемой) на LC-элементах и отдаваемой от них в сеть энергии. Протекающий в сети ток, вызванный воздействием на нее реактивных компонентов, усиливает электромагнитное поле, вызывает нагрев проводов, а также делает неравномерным потребление мощности из сети. Реактивная мощность Q равна sin угла φ умноженному на полную мощность S, иначе говоря Cos φ = R/Z.
Полная нагрузка, имеющая сопротивление Z = √ [R2 + (XL + XC)2] (импеданс), учитывает как активную, так и реактивную составляющие. Полная мощность S измеряется в вольт-амперах (ВА) и равна произведению действующей силы тока на действующее напряжение в цепи или активной мощности, деленной на cos φ.
Она не вся участвует в проведении работы, поэтому ее нужно максимально приближать к величине активной за счет увеличения значения коэффициента мощности cos φ.
Реактивная энергия циркулирует между реактивными элементами (конденсаторы и катушки индуктивности) и сетью:
Реактивная часть полной мощности создает нагрузку на электрическую сеть (провода, трансформаторное оборудование, распределительные щитки, соединительные устройства и т.д.), не выполняя полезной работы, поэтому с ней борются.
Если бы на прохождение переменного тока не действовали LC-факторы (емкостная и индуктивная составляющая), то направления прохождения переменного тока и напряжения тоже бы совпадали, сдвига фаз не было, а мощность все время была бы положительной.
Форма переменного тока и напряжения при коэффициенте мощности, равном единице:
В реальных условиях графики переменного тока и напряжения на подключенной нагрузке не совпадают между собой по фазе. Фаза тока в нагрузке может как отставать, так и опережать фазу напряжения.
Форма синусоидального тока и напряжения при коэффициенте мощности, равном 0.4:
Для того, чтобы сдвиг по фазе между напряжением и током все время был минимальным (косинус фи стремился к единице), на реактивной нагрузке, а также в импульсных блоках питания мощностью более 100 ватт ставят схемы коррекции фактора (коэффициента) мощности (PFC unit), например, для моторов это параллельно включенные конденсаторы:
Коэффициент мощности (Power Factor, PF) является физической величиной, характеризующей полноту (эффективность) использования электрической энергии, поступающей к пользователю из сети переменного тока.
Векторная диаграмма между переменным током и напряжением с углом φ между ними:
На практике коэффициент мощности (Power Factor) обозначается как косинус угла φ в пределах от минус единицы до единицы, либо как величина λ в %.
На приведенном ниже рисунке коэффициент мощности представлен, как соотношение выпиваемого пива (активная мощность) со всей кружкой пива (полная мощность, включая пену — реактивную мощность):
Треугольник мощностей и коэффициент мощности:
Формулы, выражающие мощность через косинус угла фи:
В левой части рисунка изображен график полной мощности, когда угол фи равен нулю (ток и напряжение не имеют фазового сдвига, cos φ = 1), справа — сдвиг по фазе равен 90 градусам, косинус угла фи равен нулю:
На что влияет коэффициент мощности?
Чем выше коэффициент мощности, тем лучше, так как меньше величина потерь:
Устройства, подключенные к сети переменного тока, оказывают на нее влияние не только тем, что потребляют из нее энергию, но и тем, что отдают ее в сеть из-за наличия собственной индуктивности и емкости, либо наличием собственной ЭДС (например, у электродвигателя). которая связана с периодическим накоплением-отдачей электрической энергии.
В нагрузке, на 100% потребляющей энергию из сети переменного тока, значение cos φ равно единице. Генератор, полностью отдающий в сеть энергию имеет фактор мощности, равный минус единице. В остальных случаях в сети происходят потери энергии на нагрев проводов, а также генерацию электромагнитного поля.
Так как компьютерная техника, выполняющая вычисления для майнинга криптовалют потребляет очень большие токи, то влияние фактора, определяющего коэффициент мощности очень велико. Оно проявляется не только в потерях электрической энергии, теряющейся на нагрев проводов и создание электромагнитного поля, но и в появлении искажений синусоидальной формы тока в сети, что негативно влияет на другие устройства, подключенные к этой же сети.
В городских условиях, когда к одному сегменту сети подключено множество мощных устройств, блоки питания которых работают в импульсном режиме такое влияние суммируется, что приводит к появлению всплесков напряжения, сбоям в работе компьютеров и другим негативным последствиям.
Для компенсации токов, возникающих из-за влияния фактора мощности (для потребителей это увеличение значения cos φ максимально близко к единице) в импульсных блоках питания устанавливают специальные узлы PFC (Power Factor Control). Подробнее об их работе речь идет в отдельной статье.
Учитывают ли счетчики электроэнергии потери, связанные с коэффициентом мощности?
Электрические счетчики, устанавливаемые в жилых домах, производят учет тока, проходящего через него. При этом отдельный учет потребления или генерации реактивной электроэнергии не производится. Поэтому как за потери, так и поступление в сеть реактивного тока платит население.
Как влияет на майнеров коэффициент мощности?
При наличии большого количества мощных потребителей (например, компьютеров, выполняющих вычисления в ходе майнинга), производится подключение множества импульсных блоков питания к одному вводу электричества из сети переменного тока. В этом случае, при недостаточной компенсации фактора мощности может значительно возрастать влияние на электрическую сеть, в особенности на ее проводку, устройств, подключенных к ней. Негативное влияние может проявляться в повышенном износе проводки (особенно нулевого провода в трехфазной сети) из-за значительного увеличения протекающих по ней токов, неравномерной нагрузке на сеть, что приводит к несоответствию стандартам ее основных параметров (напряжение, частота и синусоидальная форма тока) и в виде других проявлений.
Например, при входной мощности устройства, равной 60 ватт, в сети переменного тока напряжением 115 вольт на устройстве с PF=1.0, входной RMS-ток равен 521 mA. Если имеется сдвиг по фазе между током и напряжением, например, коэффициент мощности равен 0.4, то увеличивается полная потребляемая мощность, необходимая для отдачи необходимых 600 ватт активной мощности, входной RMS-ток при этом возрастает до 1.3 ампер, что в 2.5 раза увеличивает требования к проводам питания:
В сетях с напряжением 230 вольт ток увеличивается не так сильно, но влияние фактора мощности также существенно.
Увеличение коэффициента мощности позволяет уменьшить потери электроэнергии, снизить нагрузку на провода, подводящие переменный электрический ток к потребителям, уменьшить вероятность их перегрева, а также оптимально использовать мощности, подаваемые от поставщиков электрической энергии. Кроме того, компенсация влияния низкого фактора мощности обеспечивает устранение или значительное уменьшение искажений формы сетевого напряжения.
Все современные мощные импульсные блоки питания, в том числе использующиеся для майнинга, имеют специальные схемы коррекции мощности. Недостатком схем коррекции коэффициента (фактора) мощности является уменьшение надежности устройств, в которых они работают. Это связано с тем, что они работают на высоких напряжениях и мощностях, что требует использования компонентов хорошего качества, а также правильного проектирования и расчета режима их работы. Чем больше электронных компонентов содержит электрический прибор, тем больше вероятность его выхода из строя. Даже дорогие блоки питания иногда ломаются. Так как узлы PFC работают в высоковольтной части импульсных источников питания, то их поломка может привести к печальным последствиям.
В современных квартирах, в которых используются электрические плиты и/или используется электрическое отопление, подача энергии обычно осуществляется через три фазы и один нулевой провод. В связи с этим, даже при равномерном распределении нагрузки по фазам, на нулевой провод приходится в три раза больший ток. Нужно понимать, что установка схем коррекции фактора мощности уменьшает воздействие фактора мощности, но в полной мере не снимает повышенной нагрузки с нулевого провода у многофазных потребителей. Если такие потребители полностью нагружают все три фазы (например, для майнинга), то нужно использовать высококачественный медный нулевой провод большего, чем у фаз сечения.
О фундаментальном значении коэффициента мощности для всего человечества…
Значение понятия косинуса фи выходит за рамки электротехники. Его можно экстраполировать и на другие сферы, в том числе на жизнь любого сообщества, страны/государства.
Если разложить силы, движимые сообществом на три комплексные составляющие: активную, реактивную и полную, то главным фактором, определяющим величину их результирующей (полной) силы, является косинус фи, отображающий взаимодействие этих векторов.
Если общество едино и движется в одном направлении (как ток и напряжение), то его сила максимальна, так как коэффициент мощности равен единице. Если общество разобщено и подобно лебедю, раку и щуке из басни Крылова, то его полная мощность минимальна…