Что такое olap системы

OLAP системы

Применение OLAP системы позволяет автоматизировать стратегический уровень управления организацией. OLAP ( Online Analytical Processing – аналитическая обработка данных в реальном времени) представляет собой мощную технологию обработки и исследования данных. Системы, построенные на основе технологии OLAP, предоставляют практически безграничные возможности по составлению отчетов, выполнению сложных аналитических расчетов, построению прогнозов и сценариев, разработке множества вариантов планов.

Полноценные OLAP системы появились в начале 90-х годов, как результат развития информационных систем поддержки принятия решений. Они предназначены для преобразования различных, часто разрозненных, данных, в полезную информацию. OLAP системы могут организовать данные в соответствии с некоторым набором критериев. При этом не обязательно, чтобы критерии имели четкие характеристики.

Свое применение OLAP системы нашли во многих вопросах стратегического управления организацией: управление эффективностью бизнеса, стратегическое планирование, бюджетирование, прогнозирование развития, подготовка финансовой отчетности, анализ работы, имитационное моделирование внешней и внутренней среды организации, хранение данных и отчетности.

Структура OLAP системы

В основе работы OLAP системы лежит обработка многомерных массивов данных. Многомерные массивы устроены так, что каждый элемент массива имеет множество связей с другими элементами. Чтобы сформировать многомерный массив, OLAP система должна получить исходные данные из других систем (например, ERP или CRM системы), или через внешний ввод. Пользователь OLAP системы получает необходимые данные в структурированном виде в соответствии со своим запросом. Исходя из указанного порядка действий, можно представить структуру OLAP системы.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

В общем виде, структура OLAP системы состоит из следующих элементов:

В зависимости от способа организации, обработки и хранения данных, OLAP системы могут быть реализованы на локальных компьютерах пользователей или с использованием выделенных серверов.

Существует три основных способа хранения и обработки данных:

Виды OLAP систем

В зависимости от метода хранения и обработки данных все OLAP системы могут быть разделены на три основных вида.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

1. ROLAP (Relational OLAP – реляционные OLAP системы) – этот вид OLAP системы работает с реляционными базами данных. Обращение к данным осуществляется напрямую в реляционную базу данных. Данные хранятся в виде реляционных таблиц. Пользователи имеют возможность осуществлять многомерный анализ как в традиционных OLAP системах. Это достигается за счет применения инструментов SQL и специальных запросов.

Одним из преимуществ ROLAP является возможность более эффективно осуществлять обработку большого объема данных. Другим преимуществом ROLAP является возможность эффективной обработки как числовых, так и текстовых данных.

К недостаткам ROLAP относится низкая производительность (по сравнению с традиционными OLAP системами), т.к. обработку данных осуществляет сервер OLAP. Другим недостатком является ограничение функциональности из-за применения SQL.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

2. MOLAP (Multidimensional OLAP – многомерные OLAP системы). Этот вид OLAP систем относится к традиционным системам. Отличие традиционной OLAP системы, от других систем, заключается в предварительной подготовке и оптимизации данных. Эти системы, как правило, используют выделенный сервер, на котором осуществляется предварительная обработка данных. Данные формируются в многомерные массивы – OLAP кубы.

MOLAP системы являются самыми эффективными при обработке данных, т.к. они позволяют легко реорганизовать и структурировать данные под различные запросы пользователей. Аналитические инструменты MOLAP позволяют выполнять сложные расчеты. Другим преимуществом MOLAP является возможность быстрого формирования запросов и получения результатов. Это обеспечивается за счет предварительного формирования OLAP кубов.

К недостаткам MOLAP системы относится ограничение объемов обрабатываемых данных и избыточность данных, т.к. для формирования многомерных кубов, по различным аспектам, данные приходится дублировать.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

3. HOLAP (Hybrid OLAP – гибридные OLAP системы). Гибридные OLAP системы представляют собой объединение систем ROLAP и MOLAP. В гибридных системах постарались объединить преимущества двух систем: использование многомерных баз данных и управление реляционными базами данных. HOLAP системы позволяют хранить большое количество данных в реляционных таблицах, а обрабатываемые данные размещаются в предварительно построенных многомерных OLAP кубах. Преимущества этого вида систем заключаются в масштабируемости данных, быстрой обработке данных и гибком доступе к источникам данных.

Существуют и другие виды OLAP систем, но они в большей степени являются маркетинговым ходом производителей, чем самостоятельным видом OLAP системы.

К таким видам относятся:

Преимущества OLAP системы

Применение OLAP системы дает организации возможности по прогнозированию и анализу различных ситуаций, связанных с текущей деятельностью и перспективами развития. Эти системы можно рассматривать как дополнение к системам автоматизации уровня предприятия. Все преимущества OLAP систем напрямую зависят от точности, достоверности и объема исходных данных.

Основными преимуществами OLAP системы являются:

Источник

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

История OLAP

OLAP не является новой концепцией и используется уже на протяжении десятилетий. По сути, происхождение технологии отслеживается еще с 1962 года. Но термин был придуман только в 1993 году автором базы данных Тедом Коддомом, который также установил 12 правил для продукта. Как и во многих других приложениях, концепция подвергалась нескольким этапам эволюции.

История самой OLAP-технологии восходит к 1970 году, когда были выпущены информационные ресурсы Express и первый Olap-сервер. Они были приобретены Oracle в 1995 году и впоследствии стали основой онлайн-аналитической обработки многомерного вычислительного механизма, который известный компьютерный бренд предоставлял в своей базе данных. В 1992 году еще один известный онлайн-аналитический продукт обработки Essbase был выпущен компанией Arbor Software (приобретенной Oracle в 2007 году).

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

В 1998 году Microsoft выпустила онлайн-аналитический сервер обработки данных MS Analysis Services. Это способствовало популярности технологии и побудило разработку других продуктов. Сегодня функционируют несколько всемирно известных поставщиков, предлагающих Olap-приложения, в том числе IBM, SAS, SAP, Essbase, Microsoft, Oracle, IcCube.

Онлайн-аналитическая обработка

Существуют следующие основные характеристики OLAP:

Многомерное представление обеспечивает основу для аналитической обработки посредством гибкого доступа к корпоративным данным. Оно позволяет пользователям анализировать данные в любом измерении и на любом уровне агрегации.

Поддержка сложных вычислений является основой программного обеспечения OLAP.

Временная разведка используется для оценки эффективности любого аналитического приложения на протяжении определенного отрезка времени. Например, в этом месяце по сравнению с прошлым месяцем, в этом месяце по сравнению с тем же месяцем прошлого года.

Многомерная структура данных

Одной из основных характеристик онлайн-аналитической обработки является многомерная структура данных. Куб может иметь несколько измерений. Благодаря такой модели весь процесс интеллектуального OLAP-анализа является простым для менеджеров и руководителей, поскольку объекты, представленные в ячейках, являются бизнес-объектами реального мира. Кроме того, эта модель данных позволяет пользователям обрабатывать не только структурированные массивы, но и неструктурированные и полуструктурированные. Все это делает их особенно популярными для анализа данных и приложений BI.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Основные характеристики OLAP-систем:

Одним из основных компонентов концепций OLAP является сервер на стороне клиента. Помимо агрегирования и предварительной обработки данных из реляционной базы, он предоставляет расширенные параметры расчета и записи, дополнительные функции, основные расширенные возможности запросов и другие функции.

В зависимости от примера приложения, выбранного пользователем, доступны различные модели данных и инструменты, включая оповещение в реальном времени, функцию для применения сценариев «что, если», оптимизацию и сложные OLAP-отчеты.

Кубическая форма

В основе концепции лежит кубическая форма. Расположение данных в ней показывает, как OLAP придерживается принципа многомерного анализа, в результате чего создается структура данных, предназначенная для быстрого и эффективного анализа.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

OLAP-куб данных является краеугольным камнем системы. Данные в кубе организованы с использованием либо звезды, либо схемы снежинок. В центре есть таблица фактов, содержащая агрегаты (меры). Она связана с рядом таблиц измерений, содержащих информацию о мерах. Размеры описывают, как эти меры могут быть проанализированы. Если куб содержит более трех измерений, его часто называют гиперкубом.

Одной из основных функций, принадлежащих кубу, является его статический характер, который подразумевает, что куб не может быть изменен после его разработки. Следовательно, процесс сборки куба и настройки модели данных является решающим шагом на пути к соответствующей обработке данных в архитектуре OLAP.

Объединение данных

Использование агрегаций является основной причиной, по которой запросы обрабатываются намного быстрее в OLAP-инструментах (по сравнению с OLTP). Агрегации представляют собой сводки данных, которые были предварительно рассчитаны во время их обработки. Все члены, хранящиеся в OLAP таблицах измерений, определяют запросы, которые куб может получить.

В кубе скопления информации хранятся в ячейках, координаты которых задаются конкретными размерами. Количество агрегатов, которые может содержать куб, зависит от всех возможных комбинаций элементов измерения. Поэтому типичный куб в приложении может содержать чрезвычайно большое количество агрегатов. Предварительное вычисление будет выполнено только для ключевых агрегатов, которые распределяются по всему аналитическому кубу онлайн-аналитики. Это значительно сократит время, необходимое для определения любых агрегаций при выполнении запроса в модели данных.

Есть также два варианта, связанных с агрегациями, с помощью которых можно повысить производительность готового куба: создать агрегацию кеша возможностей и использовать агрегацию на основе анализа запросов пользователей.

Принцип работы

Обычно анализ оперативной информации, полученной из транзакций, может выполняться с использованием простой электронной таблицы (значения данных представлены в строках и столбцах). Это хорошо, учитывая двумерный характер данных. В случае OLAP есть отличия, что связано с многомерным массивом данных. Поскольку их часто получают из разных источников, электронная таблица не всегда может эффективно их обрабатывать.

Куб решает эту проблему, а также обеспечивает работу OLAP-хранилища данных логичным и упорядоченным образом. Бизнес собирает данные из многочисленных источников и представлен в разных форматах, таких как текстовые файлы, мультимедийные файлы, электронные таблицы Excel, базы данных Access и даже базы данных OLTP.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Все данные собираются в хранилище, наполняемом прямо из источников. В нем необработанная информация, полученная из OLTP и других источников, будет очищена от любых ошибочных, неполных и непоследовательных транзакций.

После очистки и преобразования информация будет храниться в реляционной базе данных. Затем она будет загружена на многомерный OLAP-сервер (или Olap-куб) для анализа. Конечные пользователи, отвечающие за бизнес-приложения, интеллектуальный анализ данных и другие бизнес-операции, получат доступ к необходимой им информации из Olap-куба.

Преимущества модели массива

К недостаткам OLAP относится тот факт, что некоторые решения (шаг обработки) могут быть довольно продолжительным, особенно при больших объемах информации. Обычно это исправляется путем выполнения только инкрементной обработки (изучаются данные, которые были изменены).

Основные аналитические операции

Свертка (roll-up/drill-up) также известна как «консолидация». Свертывание включает в себя сбор всех данных, которые могут быть получены, и вычисление всех в одном или нескольких измерениях. Чаще всего это может потребовать применения математической формулы. В качестве OLAP-примера можно рассмотреть розничную сеть с торговыми точками в разных городах. Чтобы определить модели и предвидеть будущие тенденции продаж, данные о них из всех точек «свернуты» в основной отдел продаж компании для консолидации и расчета.

Раскрытие (drill-down). Это противоположность свертыванию. Процесс начинается с большого набора данных, а затем разбивается на его меньшие части, тем самым позволяя пользователям просматривать детали. В примере с розничной сетью аналитик будет анализировать данные о продажах и просматривать отдельные бренды или продукты, которые считаются бестселлерами в каждой из торговых точек в разных городах.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Сечение (Slice and dice). Это процесс, когда аналитические операции включают в себя два действия: вывести определенный набор данных из OLAP-куба («разрезающий» аспект анализа) и просматривать его с разных точек зрения или углов. Это может произойти, когда все данные торговых точек получены и введены в гиперкуб. Аналитик вырезает из OLAP Cube набор данных, относящихся к продажам. Далее он будет просмотрен при анализе продаж отдельных единиц в каждом регионе. В это время другие пользователи могут сосредоточиться на оценке экономической эффективности продаж или оценке эффективности маркетинговой и рекламной кампании.

Поворот (Pivot). В нем поворачивают оси данных, чтобы обеспечить замену представления информации.

Разновидности баз данных

В принципе, это типичный OLAP-куб, который реализует аналитическую обработку многомерных данных с помощью OLAP Cube или любого куба данных, чтобы аналитический процесс мог добавлять размеры по мере необходимости. Любая информация, загружаемая в многомерную базу данных, будет храниться или архивироваться и может быть вызвана, когда потребуется.

Реляционная OLAP (ROLAP)

Многомерный OLAP (MOLAP)

Гибридная онлайн-аналитическая обработка (HOLAP)

В подходе HOLAP агрегированные итоговые значения хранятся в многомерной базе данных, а подробная информация хранится в реляционной базе. Это обеспечивает как эффективность модели ROLAP, так и производительность модели MOLAP

Рабочий стол OLAP (DOLAP)

В Desktop OLAP пользователь загружает часть данных из базы данных локально или на свой рабочий стол и анализирует ее. DOLAP относительно дешевле для развертывания, поскольку он предлагает очень мало функциональных возможностей по сравнению с другими системами OLAP

Мобильный OLAP помогает пользователям получать и анализировать данные OLAP с помощью своих мобильных устройств

SOLAP создается для облегчения управления как пространственными, так и непространственными данными в географической информационной системе (ГИС)

Существуют менее известные OLAP-системы или технологии, но эти являются основными, которые в настоящее время используют крупные корпорации, бизнес-структуры и даже правительство.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Инструменты OLAP

Инструменты для онлайн-аналитической обработки очень хорошо представлены в Интернете в виде как платных, так и бесплатных версий.

Наиболее популярные из них:

Воздействие на бизнес

Пользователь найдет OLAP в большинстве бизнес-приложений в разных отраслях. Используется анализ не только бизнесом, но и другими заинтересованными сторонами.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Некоторые из его наиболее распространенных приложений включают в себя:

Отрасли продолжают расти, а это означает, что вскоре пользователи увидят больше приложений OLAP. Многомерная адаптированная обработка обеспечивает более динамический анализ. Именно по этой причине эти OLAP-системы и технологии используются для оценки сценариев «что, если» и альтернативных бизнес-сценариев.

Источник

Что под капотом у BI? Детальный разбор технологии In-Memory OLAP

Привет, Хабр! Меня зовут Иван Вахмянин, и сегодня я хочу рассказать о том, что находится “под капотом” у современной BI-системы, от чего зависит ее производительность (и как можно её ненароком убить), и какие технические оптимизации позволяют технологии In-Memory OLAP выигрывать по скорости у других подходов.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Вообще, современные BI-платформы — это очень умный софт, который незаметно для пользователя делает множество оптимизаций, и чаще всего не требует каких-то особых ухищрений для настройки производительности. Но когда нагрузка становится действительно серьезной, BI-системой начинают пользоваться сотни пользователей, и решение обрабатывает сотни миллионов и миллиарды строк данных, иногда что-то идет не так.

С точки зрения бизнеса это бывает очень грустно. Какой-то пользователь создает дашборд, и всё падает. При этом увеличение объема памяти и количества процессоров не даёт почти никакого эффекта. Предотвратить или быстро решить такую проблему гораздо проще, если хотя бы в общих чертах представляешь, как система работает «под капотом».

Когда мы только начинали работать в сфере BI 5 лет назад, в основу продукта Visiology легла open-source библиотека Pentaho — Mondrian. Но достаточно быстро мы столкнулись с проблемами по части производительности и начали самостоятельно разрабатывать In-Memory OLAP движок под названием ViQube (об этом можно почитать в другой нашей статье — Как разработать BI-платформу — наш трудный, но интересный опыт). Собственно, в процессе этой разработки мы и накопили опыт, которым сейчас хотим поделиться.

Как работает OLAP

На первый взгляд, все BI-платформы выглядят одинаково: у вас есть источники информации, у вас есть инструменты загрузки, анализа и визуализации данных, а на выходе пользователь получает разнообразные отчеты — от печатных форм до дашбордов, в том числе на мобильных, на видеостенах, на любых устройствах. В своей основе все BI-инструменты используют модель данных на основе OLAP (On-Line Analytical Processing, многомерное представление данных), но техническая реализация OLAP движка (который непосредственно занимается вычислениями) может быть реализован по-разному, и от этого очень сильно зависит производительность и масштабируемость системы.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Технология OLAP возникла ещё в 80-х годах. В то время процессоры были намного медленнее, да и память была в дефиците, поэтому чтобы аналитик мог реально работать с данными в онлайн-режиме, придумали такую вещь как MOLAP (Multidimensional OLAP). Идея подхода в том, что для всего многомерного куба после загрузки данных производится предрасчет: на узлах иерархий предварительно рассчитываются агрегации, чтобы под любой более или менее типовой запрос пользователя можно было получить результат запроса без необходимости пересчитывать все строки. Да, при любом изменении данных нужно долго пересчитывать куб, а объем рассчитанного куба может быть в разы больше исходного датасета, но в то время других вариантов не было. MOLAP до сих пор существует и используется, например, в SQL Server Analysis Services, но на практике его используют все реже и реже.

Позже появилась реляционный OLAP, или ROLAP. Отличие от MOLAP заключается в том, что не происходит никакого предварительного расчёта агрегаций, а вычисления происходят на СУБД из бэкэнда BI-платформы. В этом случае пользователь работает с удобными инструментами, например, с конструктором дашбордов, а под капотом ROLAP-движок преобразует его запросы на лету в SQL, и они просто выполняются на какой-то СУБД.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Подобный подход характерен, например, для таких open-source систем, как Pentaho или Metabase или проприетарного SAP Business Objects, Oracle OBIEE.

У ROLAP есть целый ряд недостатков. Во-первых, если, не использовать на бэкенде специальные аналитические СУБД, такие как ClickHouse или Vertica, все будет работать ооочень медленно (дальше будет понятно, почему). Во-вторых, даже при использовании аналитической СУБД, при работе с ROLAP очень неэффективно используется кэш, потому что СУБД и BI-платформа работают отдельно друг от друга. В-третьих, поскольку не все аналитические задачи можно завернуть в SQL-запрос, ограничивается аналитическая функциональность. Но зато, на сегодняшний день ROLAP — это единственный способ работы с реально большими объемами данных, которые не помещаются в память.

Если речь идет о работе с данными объемом до терабайта, как правило, используется схема In-Memory. Данные постоянно находятся в памяти, и за расчеты отвечает специальный движок. В системах Qlik — это QIX, Power BI использует SQL Server Tabular Engine, который раньше был продуктом xVelocity, но Microsoft купил эту компанию, и теперь движок является частью MS SQL Server. У нас в Visiology движок In-Memory OLAP называется ViQube.

In-Memory OLAP привлекает простотой установки и работы, подобные движки изначально интегрированы в BI-платформы и укомплектованы удобными визуальными интерфейсами настройки, загрузки данных, управления правами и т.п. За счет размещения данных в памяти и специальных оптимизаций (про них ниже) многократно растет скорость обработки, расширяются возможности для аналитиков.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

При этом у подхода In-Memory есть и свои недостатки. И главный из них — это предел емкости памяти. Если объем данных измеряется в терабайтах, вам нужно либо строить дорогой кластер, либо склоняться к ROLAP. Кроме этого, при таком подходе не всегда удается минимизировать задержку отображения обновлений, потому что для этого данные приходится перегружать из источника в память.

Основной схемой работы для большинства промышленных BI становится гибридная схема с одновременным использованием и In-Memory OLAP, и реляционного OLAP-движка. Горячие данные хранятся в In-Memory, холодные данные, которые не влезли в заданный объем, — в СУБД. Такое решение в QlikView, например, называется Direct Discovery, в Power BI — Direct Query. В Visiology тоже поддерживаются интеграции с несколькими СУБД, в том числе с ClickHouse.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Кстати, выбор СУБД для гибридного режима также критически важен. Если мы будем работать с PostgreSQL, в котором лежит 5 терабайт данных, аналитические запросы будут исполняться крайне медленно. И если у вас не SAP HANA, придется вручную распределять данные на холодные и горячие. Как следствие, не все аналитические функции будут доступны на полном объёме данных. Но если памяти не хватает, увы, с таким положением дел приходится мириться.

Откуда “растут” плюсы In-memory OLAP?

Для скорости работы In-Memory OLAP есть как очевидные, так и скрытые причины. Тот факт, что работа движка происходит в памяти, а она намного быстрее, чем жесткий диск (спасибо, кэп) — это только 1/10 правды. Но давайте подумаем, как работают реляционные СУБД, например, тот же PostgreSQL. Ведь он в какой-то мере тоже является In-Memory. И вообще, любая современная СУБД активно использует как блочный кэш в памяти, так и внутренний.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Когда обычной дисковой СУБД, такой как PostgreSQL, нужно считать данные с жёсткого диска, она обращается к накопителю и считывает какую-то страницу. Эта страница помещается в блочный кэш (в Linux он располагается в свободном пространстве памяти). Допустим, у нас есть 128 гигабайт памяти, и 20 из них мы занимаем софтом. Всё остальное может использоваться под блочный кэш. И если СУБД нужно будет считать с этой страницы ещё что-нибудь, она возьмет эту информацию из памяти. И от того, насколько эффективно используется кэш, зависит производительность. Если для анализа используется, скажем, 30-40 гигабайт данных, мы можем расширить емкость оперативной памяти на сервере и уже после первого чтения СУБД все данные окажутся In-Memory, а обращения к диску на чтения будут происходить лишь эпизодически.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Кроме этого, у “умных” СУБД, в том числе у Postgres, имеется механизм cache-aware управления. Они могут выбирать, что складывать в кэш, а что – нет, какие данные надо заново прочитать с диска.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: www.enterprisedb.com/blog/autoprewarm-new-functionality-pgprewarm

На графике выше — влияние прогрева кэша на производительность PostgreSQL. Жёлтым показана производительность в зависимости от времени, и наглядно видно, что по мере работы пользователей СУБД считывает данные, постепенно раскладывает всё в In-Memory и достигает предела своей производительности. Если же использовать prewarm и дать Postgres команду поднять все данные в память сразу, максимальная производительность достигается сразу.

Также стоит учитывать, что мы говорим об аналитической нагрузке. Она очень сильно отличается от транзакционных задач, когда в базу нужно внести запись о покупке в интернет-магазине или считать 10 строк с историей заказов. На графике ниже показан типовой аналитический запрос из теста TPC-H. Этот тест состоит из нескольких десятков реальных аналитических запросов и широко используется для нагрузочного тестирования.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: www.tpc.org/information

В SQL-запросе из теста TPC-H можно найти много чего интересного. Во-первых, запрос идет не на поля, а на агрегации. Во-вторых, здесь присутствуют линейные арифметические операции. В-третьих, здесь часто встречаются фильтры по полям с малой кардинальностью: регионы и федеральные округа, в которых работает компания, типы клиента — активный, неактивный и так далее. В-четвертых, часто используются фильтры по полю с датой. Если мы изучаем динамику выручки, то нас интересуют такие периоды как год или квартал.

На входе подобного запроса всегда очень большое количество строк — миллионы или даже миллиарды. Поэтому СУБД вынуждена делать серию полных сканирований. С другой стороны, на выходе получается небольшое количество строк, ограниченное количеством точек, которые можно отобразить на графике — чаще всего десятки или сотни значений. Зная эти особенности аналитических запросов, можно провести оптимизацию и получить прирост производительности.

In-Memory OLAP: конкретные примеры оптимизации для BI

Учитывая особенности аналитических запросов, о которых мы уже говорили ранее, для движка BI возможен целый ряд оптимизаций, причем как технических, так и эвристических. Давайте рассмотрим их подробнее.

1. Колоночное хранение данных

Это первый шаг, дающий заметный эффект. Для обычных транзакционных запросов хранение в строках подходит оптимально. Но для аналитики необходимо получать данные по столбцам. Казалось бы, какая разница, ведь все это уже In-Memory? Но на практике кроме памяти, которая быстрее дисков, у нас также есть кэш процессора, как правило, трехуровневый. Он работает намного быстрее, чем память, доступ к которой занимает примерно 200 тактов процессора.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

Процессор может считать из памяти только целую страницу, которая сразу попадает в кэш того или иного уровня. И если следующее нужное значение попало в эту же страницу, мы потратим 10-40 тактов, а если нет — в 10 раз больше. При колоночном режиме хранения при запросе мы получаем страницу памяти, в которой, скорее всего, будет лежать все данные из одной колонки. Поэтому процессору во много раз реже нужно будет обращаться к основной памяти.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: arstechnica.com/gadgets/2002/07/caching/2

В этой оптимизации есть свои особенности. Для дисковых СУБД — это обязательная оптимизация. Здесь мы выигрываем за счет того, что реже ходим в медленное хранилище, но также проигрываем, потому что данные надо распаковать, а это — вычислительно ёмкая операция. Для дисковых СУБД получается очень выгодно, для In-Memory — все не так очевидно, потому что читать из памяти обычно быстрее, чем заниматься распаковкой.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: www.percona.com/blog/2016/03/09/evaluating-database-compression-methods

Самый быстрый из алгоритмов сжатия по скорости распаковки — LZ4. Он в среднем уменьшает размер всего в 2 раза, но зато очень быстро распаковывает, со скоростью порядка 500 мегабайт в секунду на ядро процессора. В бенчмарке на графике LZ4 вообще показал результат 3 гигабайта данных в секунду. Такая скорость дает очень хороший выигрыш для дисковых СУБД, скорость чтения для которых – те же 500 мегабайт в секунду. Но для памяти скорость передачи данных составляет десятки гигабайт в секунду, получить преимущество за счёт LZ4 оказывается сложно.

Однако не стоит забывать, что мы чаще всего работаем с данными низкой кардинальности. Например, в строке с названиями торговой точки очень часто будут повторяться одни и те же значения или их ID: “Москва, Москва, Москва, Москва…”

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: Guassian and speckle noise removal from ultrasound images using bivariate shrinkage by dual tree complex wavelet transform (Professor G R Sinha, 2015)

Для подобных данных есть ещё один алгоритм, который называется Run-length encoding. Он работает очень просто: строки типа ААААВВВВВСС он сжимает в виде 4A5B2C. Это прекрасный подход для данных с низкой кардинальностью, он помогает экономить память и оптимальнее использовать кэш процессора.

3. Векторные инструкции

Чтобы сложить 2 числа, мы кладём в один регистр процессора одно число, а в другой регистр — другое. Для ускорения этого процесса существуют векторные регистры и векторные операции (SIMD — Single Instruction Multiple Data). Они позволяют за одну операцию сложить сразу N чисел. Это уже очень зрелая технология, которая появилась в процессорах еще в 1993 году. Она поддерживалась еще в Pentium MMX (166 МГц — у меня такой был, до сих пор помню, как на него термопасту намазывал).

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: www.codetd.com/en/article/9633503

В Pentium MMX векторных регистров было 8, и они были рассчитаны только на целочисленную арифметику. На текущий момент практически во всех процессорах есть 128-битные регистры SSE и наборы инструкций. Регистры AVX уже 256-битные, а в серверах есть даже AVX 512. Они работают с числами с плавающей запятой, и их можно использовать для оптимизации аналитической нагрузки.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы
Источник: technews.tw/2020/07/16/linus-torvalds-avx-512-critique

При работе с AVX 512 мы можем обрабатывать в одном регистре 16 чисел со стандартной точностью. Теоретически тут можно получить хороший выигрыш, но для этого необходимо преодолеть ряд технических сложностей. Чтобы при компиляции оптимизация работала, нужно предусмотреть ее при написании кода. Для этого используются интринсики – особый набор функций, которые в явном виде указывают компилятору, какие инструкции процессора нужно использовать.

Вот пример, как для расчёта скалярного произведения используется AVX-инструкции 256-битных регистров.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

На нашей практике использование именно AVX даёт от 1 до 10% прирост производительности, в зависимости от задач. Когда вы используете современную BI-систему, в зависимости от конкретного процессора, система будет применять разный код. Производительность от этого увеличивается, но не драматически, а в лишь в небольших пределах.

4. Поздняя материализация

Материализация — это процесс формирования результата, ответа на запрос. Например, простой SQL-запрос SELECT C1, С2, D1, D2 из 2 таблиц, получит 2 поля из одной и 2 поля из другой таблицы. Далее мы соединяем их по ключу — С1=D1.

Что такое olap системы. Смотреть фото Что такое olap системы. Смотреть картинку Что такое olap системы. Картинка про Что такое olap системы. Фото Что такое olap системы

В случае ранней материализации мы получаем 4 колонки и работаем с колоночной базой. То есть мы сначала берём С1 и С2, соединяем их в таблицу. Потом делаем то же самое с D1, D2 и после этого выполняем Join, то есть формируем строки из этих 2 таблиц, для которых истинно условие С1=D1.

В случае аналитической нагрузки на выходе всегда мало данных, потому что фильтры отсекают достаточно много значений. Когда выполняется JOIN, создаётся очень большая таблица, которая не нужна. Ведь на последней операции будет отброшено много данных.

При поздней материализации мы сначала разбираемся, что и в какой колонке нам нужно. Сначала выполняется операция JOIN С1 = D1, и мы выбираем нужные нам значения только из правой таблицы. Это можно сделать за один проход. А после этого можем взять из таблицы С только те поля, строки которых после JOIN остались. В итоге не нужно создавать большую промежуточную таблицу.

Конечно, такая оптимизация не сработает на любой нагрузке. Исследования Vertica, например, показывают, как многопрофильная СУБД позволяет выбирать различные стратегии материализации, в зависимости от задач. Но именно для BI характерна нагрузка, связанная с поздней материализацией, поэтому ее использование предпочтительно.

5. Эвристические оптимизации

In-Memory OLAP чаще всего является неотъемлемой частью BI-платформы, а BI-платформа прекрасно “знает”, какие данные в нее загружаются, как пользователь с ними работает. Конечно, это неочевидные вещи, они происходят “под капотом” BI-системы и не всегда даже видны, но позволяют получить хороший прирост производительности.

Во-первых, часто применяется автоматическая нормализация или денормализация. Данные с низкой кардинальностью иногда бывает выгодно нормализовывать, а иногда — наоборот. Чаще всего BI-платформы стараются максимально денормализовать таблицы. Такой подход позволяет максимально избегать достаточно тяжелых операций JOIN. Пользователь может даже не видеть этого: если мы загрузили в систему 2 таблицы и связали их по ключу, система может сразу превратить их в одну таблицу.

В некоторых случаях, наоборот, происходит автоматическая нормализация. Если поле очень жирное, например, с текстовым комментарием, держать его по всей колонке будет неоптимально. Вместо этого такое поле можно автоматически вывести в справочник. Вы будете видеть в таблице и строку, и столбец, а на самом деле данные будут находиться в отдельной таблице, а в памяти будет находиться только ID. Такие методики используются довольно часто.

6. Сортировка по календарю

Поскольку мы работаем с данными, которые практически всегда растянуты во времени, стоит учитывать интерес пользователей – а он чаще всего сконцентрирован на ближайших данных. Поэтому оказывается выгодно сортировать данные по календарному измерению. Действительно, если пользователь работает с текущим годом, зачем ему данные “с начала времён”?
Однако, если вы храните дату в виде строкового столбца, BI-система не сможет оптимизировать данные. Но если сортировка удается, иногда получается свести большой датасет к очень компактному, просто выкинув из него все года, кроме текущего.

Пользователи BI часто работают с одними и теми же данными. Поэтому хорошую эффективность показывает разделяемый кэш. Если пользователь А запустил дашборд и выполнил свой запрос, то пользователь В на том же дашборде сможет получить результат быстрее, потому что необходимые данные будут уже в кэше.

Разделяемый кэш под запросы позволяет кэшировать данные внутри запросов. Например, один пользователь запросил аналитику и отфильтровал её по отделу А, а другой хочет по отделу В. В этом случае оптимизации не получится, потому что фильтрация происходит на раннем этапе. Но в некоторых случаях и для подобных ситуаций удается оптимизировать запрос.

Многие BI-системы выстраивают обратный индекс для строковых полей. Он позволяет ускорить поиск с операторами по строкам. И хотя BI-системы и OLAP движок In-Memory — это не замена полнотекстовому поиску, подобные оптимизации встречаются достаточно часто.

Каков эффект?

Все перечисленные меры помогают сделать BI-систему, основанную на In-Memory OLAP, более устойчивой и производительной, не прибегая к гибридным схемам работы с подключением реляционных БД. Рост производительности сильно зависит от используемых задач, но в процессе работы над ViQube мы убедились в том, что оптимизации лучше всего закладывать на этапе исходного кода и изначально проектировать систему с учетом особенностей аналитических запросов.

Кроме этого, на своем опыте мы нашли ряд кейсов, которые позволяют легко “убить” производительность In-Memory OLAP. Можно считать этот набор “вредных советов” пасхалочкой для тех, кто дочитал до конца 🙂

BI-система, работающая на базе In-Memory OLAP, уже по определению имеет высокую производительность — однако она не будет неубиваемой! Ниже — список из 5 “вредных советов” по In-Memory, выстраданных на своей шкуре в процессе разработки движка ViQube и его использования в реальных проектах.

1. Сложные вложенные выражения

Прекрасными убийцами производительности In-Memory систем являются запросы, в которых плохо работает векторизация. Любые вычисления с использованием нелинейных функций, которые задействуют много полей, приводят к радикальному снижению скорости работы системы.

Очень часто в своей практике я сталкивался с тем, что аналитик пишет какое-то выражение на Qlik Expressions или на DAX в Power BI, которое хорошо работает, когда в базе 10 тысяч строк. Но по мере роста масштабов производительность начинает деградировать невероятными темпами.

Обычно это происходит потому, что формула запроса сложна и не даёт движку использовать преимущества колоночного хранения векторных инструкций. Вместо этого системе приходится находить все поля по строкам, перебирать их одну за другой. В этом случае производительность падает до уровня СУБД со строчным хранением. Конец оптимизации.

2. Вложенные запросы

Вложенные запросы — крайне важная в аналитике вещь. Очень часто результатом ответа на первый запрос оказывается таблица, и по этой таблице мы производим дополнительный анализ. Например, в DAX подобный подход легко реализуется с помощью так называемых контекстов, и поэтому он весьма популярен среди аналитиков. Возможность создавать вложенные запросы есть и в других движках.

Однако пользоваться такими запросами нужно аккуратно. Ведь если первый запрос возвращает большой промежуточный результат (например, десятки миллионов строк), движок будет вынужден выполнить раннюю материализацию и создать огромную промежуточную таблицу.

Кстати, такой запрос может вообще не пройти в принципе, если движок упрётся в предельную емкость доступной памяти. А может привести к очень сильному замедлению работы BI-системы. Поэтому при создании вложенных запросов нужно оценивать размеры промежуточного результата.

3. Частое обновление данных

Частое обновление данных не так страшно, если вы используете специальные инструменты для работы в режиме Real-time. Для чего? Почему BI-платформа In-Memory OLAP не очень любят Real-time и для Real-time предлагают, по сути, отдельные инструменты. В Power BI, например, Streaming Dataset. Зачем это сделано? Почему просто не дописывать и не считать заново?

Каждый раз, когда мы что-то меняем в исходных данных, происходит серьёзная инвалидация кэша. То есть и общий кэш, и разделяемый кэш (свой для каждого пользователя), кэш под запрос — всё это приходится выкинуть и ждать, пока оно рассчитается заново. Даже добавление одной новой строки приводит к инвалидации, особенно если она реализована не слишком умно. К тому же BI-платформы чаще всего инвалидируют кэш с запасом, чтобы исключить показ пользователю неправильных данных.

Частая инвалидация ведёт к деградации производительности BI-системы, и это особенно заметно, если одновременно BI-система обрабатывает тысячи запросов. Как правило, большинство пользователей работают с готовыми дашбордами, для которых кэш — основной источник оптимизации. Когда мы проводили нагрузочное тестирование для профиля пользователя, который просто работает с дашбордом, 90-95% запросов в принципе не доходили до движка и обслуживались из кэша. Именно поэтому частая инвалидация ведет к падению производительности в 10 и более раз.

4. Маленький запас свободной памяти

Иногда кажется, что для работы системы неважно, сколько имеется свободной оперативной памяти, лишь бы хватало общей емкости. Но на самом деле свободная память используется для буферного кэша. Можно сказать, что для In-Memory движков это не так критично, потому что они не так часто работают с жёстким диском. Но в те моменты, когда он “поднимает” данные, использует snapshot, сохраняет или загружает что-то, наличие буферного кэша оказывается очень даже важным фактором. К тому же, помимо In-Memory движка в любой BI есть и другие части системы, например, компоненты ОС. И если память кончится, они начнут резко тормозить, потому что не смогут использовать буферный кэш.

Но и это еще не все. Нехватка свободной памяти ведет к рискам просадки производительности в сложных запросах. Когда происходит создание больших объемов промежуточных данных, они тоже могут вытеснить буферный кэш, не позволяя использовать его. Что ещё хуже, такие запросы могут достичь предела доступной памяти, и вся система упадёт в swap. Это будет полный коллапс с точки зрения производительности.

5. Строковые поля с высокой кардинальностью

Последний “вредный совет” — загружать строковые поля с высокой кардинальностью. Добавляя к датасету комментарии к заказам, сообщения из чата или что-то подобное, можно сильно просадить производительность. То, что хорошо подходит для полнотекстового поиска, плохо работает для движков In-Memory OLAP. Такие данные не дают использовать RLE, векторные инструкции. Здесь мы снова падаем в выполнение строковых операций, производительность для которых намного меньше, чем для арифметических. BI-система в принципе не всегда может создать индекс на такие строковые поля со всеми вытекающими последствиями.

Да пребудет с вами производительность

Как я уже говорил, In-Memory OLAP — это продвинутая и умная технология, которая, чаще всего, «просто работает» и позволяет не задумываться о том, что внутри у BI-платформы. Но, исключения из правил случаются, и, я надеюсь, что эта статья поможет быть к ним готовым.

Всех с наступающим, и отличной производительности всем вашим сервисам в Новом Году!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *