Что такое mas в рентгенологии
Что такое mas в рентгенологии
Больные, которым производятся рентгенографические исследования, не все одного возраста. Технические условия рентгенографии принято вырабатывать для взрослых людей средней упитанности в возрасте от 18 до 50 лет (не учитывая специфики работы в рентгеновских кабинетах детских лечебных учреждений). Для больных других возрастов в экспозицию вводятся поправочные коэффициенты, на которые следует умножать величину исходной экспозиции.
Наличие гипсовой повязки также влияет на величину экспозиции. При рентгенографии объекта в гипсовой повязке надо повышать напряжение на рентгеновской трубке на 10—15 кв или увеличивать экспозицию в три раза (первое предпочтительнее)
Выбор экспозиции также зависит от фотографических свойств рентгеновской пленки. Полная характеристика фотографических свойств в тему данной монографии не входит, поэтому ниже дается краткая характеристика отечественных рентгеновских пленок, применяемых в медицинской практике.
1. Тип РМ-1 — рентгеновская медицинская, экранная, средней чувствительности (не ниже 250 обратных рентген), коэффициент контрастности 2,7—3,0.
2. Тип РМ-2 — рентгеновская медицинская, экранная, высокой чувствительности (не ниже 350 обр. р.), коэффициент контрастности 3,0. Должна заменить тип РМ-1.
3. Тип РМ-4 — рентгеновская медицинская, безэкранная, средней чувствительности (без экранов 50 обр. р.), коэффициент контрастности 3,0. Идентичная технической пленке типа РТ-1.
4. Тип РМ-6 — рентгеновская медицинская, экранная (только в комбинации с экранами типа УС), сенсибилизированная — изохроматическая (проявление в темноте!), особовысокочувствительная (не ниже 1000 обр. р.), коэффициент контрастности 2,5.
Плотность фотографической вуали у всех типов пленок при выпуске не превышает 0,2, к концу срока хранения — не более 0,3.
Фабрика гарантирует указанные ею фотографические свойства в течение 12 месяцев при условии правильного хранения и проявления пленки в условиях, указанных на этикетке. При несоблюдении этих условий величины чувствительности, коэффициента контрастности и вуали меняются. При хранении пленок в нормальных условиях допускается понижение чувствительности и коэффициента контрастности примерно на 20%.
Выбор экспозиции зависит от чувствительности рентгеновской пленки. Чувствительность — свойство светочувствительного слоя фотографического материала в большей или меньшей степени химически изменяться под действием лучистой энергии (света, рентгеновского излучения), в результате чего образуется скрытое изображение, превращаемое проявлением в видимое. Численно величина чувствительности рентгеновской пленки определяется графически с помощью сенситометрического бланка и выражается в «обратных рентгенах».
Чем выше чувствительность, тем меньшая доза рентгеновского излучения вызывает почернение рентгеновской пленки, и, наоборот, чем меньше чувствительность, тем большая доза излучения вызывает почернение рентгеновской пленки. Следовательно, чувствительность рентгеновской пленки обратно пропорциональна дозе рентгеновского излучения, создающего на данном эмульсионном слое в результате проявления (или иной химико-фотографической обработки) заданный фотографический эффект.
Мощность дозы рентгеновского излучения
Содержание
В чём измеряется мощность дозы рентгеновского излучения и как происходит радионуклидное накопление в человеческом организме?
Какой объем накопленного ионизирующего облучения критичен для здоровья?
Системные и внесистемные единицы измерения
В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.
В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.
За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.
Области применения Рентгена и Зиверта
Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.
Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.
Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.
Тысячные и миллионные доли Зиверта/Рентгена
Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.
Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.
Допустимый объём накопленного в организме облучения
Доза облучения при воздействии на человеческий организм имеет накопительное свойство. Учеными определен критический порог накопленных на протяжении жизни Зивертов в организме, превышение которого чревато негативными последствиями. Безопасный объем накопленного облучения находится в диапазоне от 100 до 700 миллизивертов.
Для коренных жителей высокогорных районов данные показатели могут быть немного выше.
Основные источники накопления в организме радионуклидных соединений
Ионизирующее излучение происходит вследствие инерционного высвобождения магнитных волн при активном взаимодействии атомов. Источники ионизирующего излучения делятся на природные и искусственные.
Природные ионизирующие излучения
К числу природных источников излучения в первую очередь относится естественный радиационный фон. В различных районах планеты фиксируется разный уровень радиации. На его размер оказывают прямое влияние следующие факторы:
Оптимальным для жизни считается радиационный фон 0,2 микрозиверта в час (или 20 микрорентген в час). Верхний порог допустимого уровня: 0,5 микрозивертов в час (50 микрорентген в час).
В зоне радиационного фона до 10 мкЗв/ч (1 мР/ч) возможно безопасное нахождение на протяжении 2-3 часов. Более продолжительное пребывание способно повлечь критические последствия.
Источники накопления дозы естественного излучения в организме
Среднестатистическая накапливаемая в человеческом организме доза естественного излучения составляет примерно 2–3 мЗв в год. Она складывается из следующих показателей:
Одним из источников природного ионизирующего излучения является сам человеческий организм, производящий собственные отложения радионуклидных соединений. Среднестатистический уровень одного только скелета колеблется от 0,1 до 0,5 мЗв.
Искусственные ионизирующие излучения
К источникам искусственного ионизирующего облучения в первую очередь относятся медицинские аппараты, применяемые во время проведения рентгеновской диагностики или терапии. В разных видах рентгеновского обследования различная величина эквивалентной поглощенной дозы. Также на мощность дозы облучения влияет срок выпуска и эксплуатационная нагрузка используемого рентген аппарата.
Рентгеновская аппаратура последнего поколения подвергает человеческий организм облучению в несколько десятков раз ниже, чем предшествовавшие модели. Современные цифровые аппараты практически безопасны.
Размер доз облучения при рентгенодиагностике
Мощность дозы рентгеновского излучения в современных аппаратах по сравнению с их предыдущими модификациями:
При рентгеноскопической диагностике происходит визуальное обследование органов с оперативным выводом необходимой информации на монитор компьютера. В отличие от фотографического метода, данный тип диагностики подвергает пациента меньшей дозе облучения за равную единицу времени. Но в некоторых случаях обследование может проводиться более длительное время.
При диагностике продолжительностью до 15-ти минут средняя мощность полученной дозы колеблется от 2 до 3,5 мЗв.
Во время проведения диагностики желудочно-кишечного тракта человек получает дозу облучения до 6-ти миллизивертов. При компьютерной томографии – от 2-х до 6-ти миллизивертов (мощность получаемой дозы напрямую зависит от диагностируемых органов).
При проведении сравнительного анализа получаемой человеком дозы ионизирующего облучения от аппаратов рентгенодиагностики и повседневном пребывании в привычной окружающей среде учёными были получены следующие данные:
Согласно законодательству Российской Федерации по радиационной безопасности допустимой нормой рентгеновского облучения (средняя годовая эффективная доза) является обобщенная доза в 70 мЗв, полученная в течение 70-ти лет жизни.
И опять кое-что о рентгене. Е. В. Штрыкова (№1, 2016)
главный специалист-эксперт отдела
за радиационной безопасностью
Межрегиональное управление № 153
Федерального медико-биологического агентства
(Межрегиональное управление № 153 ФМБА России)
Статья предназначена для самого широкого круга читателей журнала, поскольку слово «радиация» часто обладает магическим и, порой, пугающим многих людей каким-то ужасным воздействием. Все мы слышали слово «рентген». Так что же это такое – «рентген»?
Рентгенологические обследования (а также рентгенохирургические методы операбельного вмешательства) являются одними из наиболее распространенных методов в современной российской и в мировой медицине.
Рентгеновское излучение используется для получения простых рентгеновских снимков костей и внутренних органов, в флюорографии, в компьютерной томографии, в ангиографии и прочих рентгеновских методах диагностики и лечения.
Рентгенологические методы обследования используются гораздо реже в случае беременных женщин и детей, однако даже у этих категорий пациентов, в случае необходимости, рентгенологическое обследование может проведено, без существенного риска для развития беременности или здоровья ребенка.
Ключевые слова: рентгенологические обследования, эффективная доза, единица измерения эффективной дозы общего облучения человеческого тела, уровень безопасности, процедура.
Введение
Что представляют собой волны рентгеновских лучей, и какое влияние они оказывают на организм человека?
Рентгеновские лучи являются видом электромагнитного излучения, другими формами которого являются свет или радиоволны. Характерной особенностью рентгеновского излучения является очень короткая длина волны, что позволяет этому виду электромагнитных волн нести большую энергию и придает ему высокую проникающую способность. В отличие от света, рентгеновские лучи способны проникать сквозь тело человека («просвечивать его»), что позволяет врачу рентгенологу получить изображения внутренних структур тела человека.
Чтотакое растр или «отсеивающая решётка»?
Растр был изобретен в 1913 году доктором Густавом Баки.
Принцип действия растра.
Когда рентгеновский аппарат посылает излучения через тело, происходит поглощение и изменение направления рентгеновских лучей. Только около 1 процента рентгена проходят через тело по прямой линии и вызывают изменения на средстве визуализации (рентгеновская пленка, CR или DR-детектор. Остальные лучи являются лишними и их фильтрация улучшает качество рентгенограммы.
Основу растра составляет сетка из свинца, никеля и алюминия. Полоски металла должны быть очень тонкими. Это позволяет расположить большое количество ячеек на 1 мм. При 2-3 ячейках, расположенных на 1 мм растра, возможно увидеть саму решетку на рентгенограмме в виде тонкой сетки. При 6 ячейках и больше, расположенных на 1 мм растра, сетка на растре не видна. Одним из показателей растра является соотношение размера грани ячейки к ее протяженности. Чем это соотношение больше, тем лучше степень фильтрации и тем больше требований к перпендикулярности системы рентгеновский луч (детектор). В компьютерной рентгенографии растр на изображении убирается программой отцифровщика.
Изобретение относится к разделу рентгеновской техники. Оно предназначено для ограничения пучка рентгеновского излучения, выходящего из рентгеновского излучателя, и формирования узкого веерного пучка излучения в рентгенодиагностических аппаратах сканирующего типа, например цифровом флюорографе. Техническим результатом является обеспечение возможности световой имитации пучка излучения в рентгенодиагностических аппаратах сканирующего типа. Рентгеновский щелевой коллиматор содержит две плоскопараллельные пластины из материала с высоким атомным номером, закрепленные взаимно параллельно с небольшим зазором, образующим щелевой канал коллиматора, дополнен оптико-электронной системой, включающей оптически сопряженные лазер, две прямоугольные призмы и зеркальный отражатель. Лазер и первая призма находятся с внешней стороны одной из плоскопараллельных пластин и закрыты свето- и рентгенозащитным кожухом, а вторая призма и зеркальный отражатель, изготовленные из материала, слабо поглощающего рентгеновские лучи, размещены в отверстиях между плоскопараллельными пластинами и перекрывают щелевой канал коллиматора. Зеркальный отражатель, представляющий собой прямоугольный многогранник с отражающими боковыми гранями, соединен своим основанием с осью электродвигателя, проходящей перпендикулярно к щелевому каналу коллиматора, кроме того, на выходе щелевого канала установлена бленда из светонепроницаемого и рентгенопрозрачного материала.
Известен рентгеновский щелевой коллиматор, входящий в состав цифрового рентгенодиагностического аппарата сканирующего типа. Рентгеновский коллиматор имеет корпус, изготовленный из металла с высоким атомным номером, в форме плоского тубуса. Коллиматор соединен с рентгеновским излучателем. Рабочий канал коллиматора формирует узкий веерный рентгеновский пучок.
Известен также рентгеновский щелевой коллиматор, входящий в состав рентгенографической установки для медицинской диагностики. Рентгеновский коллиматор представляет собой пластину из металла с высоким атомным номером, в которой выполнена узкая продольная щель, формирующая узкий веерный пучок рентгеновского излучения.
Рентгенологические обследования являются одними из наиболее распространенных в современной медицине. Рентгеновское излучение используется для получения простых рентгеновских снимков костей и внутренних органов, флюорографии, в компьютерной томографии, в ангиографии и пр.
Исходя из того,что рентгеновское излучение относится к группе радиационных излучений, оно (в определенной дозе) может оказывать негативное влияние на здоровье человека. Проведение большинства современных методов рентгенологического обследования подразумевает облучение обследуемого ничтожно малыми дозами радиации, которые совершенно безопасны для здоровья человека.
Основная часть.
Медицинские исследования рентгеновскими лучами (рентгенологические исследования) во многих случаях предоставляют важную информацию о состоянии здоровья обследуемого человека и помогают врачу поставить точный диагноз в случае целого ряда сложных заболеваний.
Большая проникающая способность и энергия рентгеновских лучей делают их довольно опасными для организма человека. Рентгеновское излучение является одним из наиболее распространенных видов радиации. Во время прохождения через организм человека рентгеновские лучи взаимодействуют с его молекулами и ионизируют их. Говоря проще, рентгеновские лучи способны «разбивать» сложные молекулы и атомы организма человека на заряженные частицы и активные молекулы. Как и в случае других видов радиации, опасным считается только рентгеновское излучение определенной интенсивности, которое воздействует на организм человека в течение достаточно долгого промежутка времени. Подавляющее большинство медицинских обследований в рамках которых применяется рентгенологическое излучение, используют рентгеновские лучи с низкой энергией и облучают тело человека очень малые промежутки времени в связи с чем, даже при их многократном повторении они считаются практически безвредными для человека.
Дозы рентгеновского излучения, которые используются в обычном рентгене грудной клетки или костей конечностей не могут вызвать никаких немедленных побочных эффектов и лишь очень незначительно (не более чем на 0,001%) повышают риск развития рака в будущем.
Измерение дозы облучения при рентгенологических обследованиях
Как уже было сказано выше, влияние рентгеновских лучей на организм человека зависит от их интенсивности и времени облучения. Произведение интенсивности излучения и его продолжительности представляет дозу облучения.
Единица измерения дозы общего облучения человеческого тела это мили-Зиверт (мЗв). Также, для измерения дозы рентгеновского излучения используются и другие единицы измерения, включая внесистемную единицу «Рентген (Р)».
Разные ткани и органы организма человека обладают различной чувствительностью к облучению, в связи с чем, риск облучения различных частей тела в ходе рентгенологического обследования значительно варьирует.
Термин эффективная доза используется в отношении риска облучения всего тела человека.
Например, при рентгенологическом обследовании области головы, другие части тела практически не подвергаются прямому воздействию рентгеновских лучей. Однако, для оценки риска, представленного здоровью пациента, рассчитывается не доза прямого облучения обследуемой зоны, а определяется доза общего облучения организма – то есть, эффективная доза облучения. Определение эффективной дозы осуществляется с учетом относительной чувствительности разных тканей, подверженных облучению. Так же, эффективная доза позволяет провести сравнение риска рентгенологических исследований с более привычными источниками облучения, такими как, например, радиационный фон, космические лучи и пр.
Расчет дозы облучения и оценка риска рентгенологического облучения.
Необходимо отметить, что указанные в таблице дозы являются ориентировочными и могут варьироваться в зависимости от используемых рентгеновских аппаратов и методов проведения обследования.
Процедура
Эффективная доза облучения
Сопоставимо с природным облучением, полученным за указанный промежуток времени
Методы рентгенодиагностики в стоматологии
Методика и техника рентгенологического исследования зубов и челюстей имеет свои особенности.
В стоматологической практике применяют следующие методы лучевой диагностики:
• Внутриротовая контактная рентгенограмма
• Внутриротовая рентгенография вприкус
• Внеротовые рентгенограммы
• Панорамная рентгенография
• Ортопантомография
• Радиовизиография
Дополнительные методы исследования:
• Компьютерная томография
• Магнитно-резонансная томография
• Методы с введением контрастных веществ
1. Внутриротовая контактная рентгенография
Основой рентгенологического исследования при большинстве заболеваний зубов и пародонта по-прежнему служит внутриротовая рентгенография.
Выполняется на специальном дентальном рентгеновском аппарате (хотя может быть выполнена и на обычном).
Для внутриротовой рентгенографии используют пакетированную или специально нарезанную (3×4 см) пленку, упакованную в светонепроницаемые стандартные пакеты.
На одном снимке можно получить изображение не более 2-3 зубов
2. Внутриротовая рентгенография вприкус.
Рентгенограммы вприкус выполняют в тех случаях, когда невозможно сделать внутриротовые контактные снимки (повышенный рвотный рефлекс, тризм, у детей), при необходимости исследования больших отделов альвеолярного отростка (на протяжении 4 зубов и более) и твердого неба, для оценки состояния щечной и язычной кортикальных пластинок нижней челюсти и дна полости рта.
Стандартный конверт с пленкой вводят в полость рта и удерживают сомкнутыми зубами. Рентгенограммы вприкус используют для исследования всех зубов верхней челюсти и передних нижних зубов.
Также окклюзионная рентгенография применяется и для получения изображения дна полости рта при подозрении на конкременты поднижнечелюстной и подъязычной слюнных желез, для получения изображения челюстей в аксиальной проекции. Она позволяет уточнять ход линии перелома в пределах зубного ряда, расположение костных осколков, состояние наружной и внутренней кортикальных пластинок при кистах и новообразованиях, выявлять реакцию надкостницы
3. Внеротовые (экстраоральные) рентгенограммы.
Внеротовые рентгенограммы дают возможность оценить состояние отделов верхней и нижней челюстей, височно-нижнечелюстных суставов, лицевых костей, не получающих отображения или видимых лишь частично на внутриротовых снимках.
Ввиду того что изображение зубов и окружающих их образований получается менее структурным, внеротовые снимки используют для их оценки лишь в тех случаях, когда выполнить внутриротовые рентгенограммы невозможно (повышенный рвотный рефлекс, тризм и т.п.).
Подбородочно-носовую проекцию применяют для исследования верхней челюсти, верхнечелюстных пазух, полости носа, лобной кости, глазницы, скуловых костей и скуловых дуг.
На рентгенограммах лицевого черепа в лобно-носовой проекции видны верхняя и нижняя челюсти, на них проецируются кости основания черепа и шейные позвонки.
Рентгенографию тела и ветви нижней челюсти в боковой проекции проводят на дентальном рентгенодиагностическом аппарате.
Рентгенограмму черепа в передней аксиальной проекции выполняют для оценки стенок верхнече¬люстной пазухи, в том числе задней, полости носа, скуловых костей и дуг; на ней видна нижняя челюсть в аксиальной проекции.
4. Панорамная томография
Более трех десятилетий назад в арсенал рентгенодиагностики заболеваний зубочелюстной системы, ЛОР-органов и других отделов черепа вошла панорамная рентгенография. При этом методе исследования аппликатор рентгеновской трубки вводят в рот пациента, а кассета располагается вокруг верхней или нижней челюстной дуги. В обоих случаях пациент придерживает кассету с наружной стороны ладонями, плотно прижимая ее к мягким тканям лица.
Проводится также и боковая панорамная томография, на боковом панорамном снимке одновременно отображаются зубы верхнего и нижнего ряда каждой половины челюсти.
Прямые панорамные рентгенограммы имеют преимущество перед внутриротовыми снимками по богатству деталями изображения костной ткани и твердых тканей зубов. При минимальной лучевой нагрузке они позволяют получить широкий обзор альвеолярного отростка и зубного ряда, облегчают работу рентгенолаборанта и резко сокращают время исследования. На этих снимках хорошо видны полости зуба, корневые каналы, периодонтальные щели, межальвеолярные гребни и костная структура не только альвеолярных отростков, но и тел челюстей. На панорамных рентгенограммах выявляются альвеолярная бухта и нижняя стенка верхнечелюстной пазухи, нижнечелюстной канал и основание нижнечелюстной кости.
На основании панорамных снимков диагностируют кариес и его осложнения, кисты разных типов, новообразования, повреждения челюстных костей и зубов, воспалительные и системные поражения. У детей хорошо определяется состояние и положение зачатков зубов.
5. Ортопантомография
Панорамная зонография, или, как ее чаще называют, ортопантомография, явилась своего рода революцией в рентгенологии челюстно-лицевой области и не имеет себе равных по ряду показателей (обзор большого отдела лицевого черепа в идентичных условиях, минимальная лучевая нагрузка, малые затраты времени на исследование).
Панорамная зонография позволяет получить плоское изображение изогнутых поверхностей объемных областей, для чего используют вращение рентгеновской трубки и кассеты.
Преимуществом ортопантомографии является возможность демонстрировать межчелюстные контакты, оценивать Результаты воздействия межчелюстной нагрузки по состоянию замыкающих пластинок лунок и определять ширину периодонтальных путей.
Ортопантомограммы демонстрируют взаимоотношения зубов верхнего ряда с дном верхнечелюстных пазух и позволяют выявить в нижних отделах пазух патологические изменения одонтогенного генеза.
Особенно важно использовать ортопантомографию в детской стоматологии, где она не имеет конкурентов в связи с низкими дозами облучения и большим объемом получаемой информации. В детской практике ортопантомография помогает диагностировать переломы, опухоли, остеомиелит, кариес, периодонтиты, кисты, определять особенности прорезывания зубов и положение зачатков.
6. Радиовизиография
Радиовизиография дает изображение, регистрируемое не на рентгеновской пленке, а на специальной электронной матрице, обладающей высокой чувствительностью к рентгеновским лучам. Изображение с матрицы, по оптоволоконной системе передается в компьютер, обрабатывается в нем и выводится на экран монитора. В ходе обработки оцифрованного изображения может осуществляться увеличение его размеров, усиление контраста, изменение, если необходимо, полярности — с негатива на позитив, цветовая коррекция.
Компьютер дает возможность более детального изучения тех или иных зон, измерения необходимых параметров, в частности длины корневых каналов, денситометрии. С экрана монитора изображение может быть перенесено на бумагу — с помощью принтера, входящего в комплект оборудования. Из всех достоинств цифровой обработки рентгеновского изображения мы отметим особо такие: быстроту получения информации, возможность исключения фотопроцесса и снижение дозы ионизирующего излучения на пациента в 2-3 раза.
7. Компьютерная томография (КТ).
Метод позволяет получить изображение не только костных структур челюстно-лицевой области, но и мягких тканей, включая кожу, подкожную жировую клетчатку, мышцы, крупные нервы, сосуды и лимфатические узлы.
Компьютерная томография широко используется при распознавании заболеваний лицевого черепа и зубочелюстной системы: патологии височно-нижнечелюстных суставов, врожденных и приобретенных деформаций, переломов, опухолей, кист, системных заболеваний, патологии слюнных желез, болезней носо- и ротоглотки.
Метод позволяет разрешить диагностические затруднения, особенно при распространении процесса в крылонебную и подвисочную ямки, глазницу, клетки решетчатого лабиринта.
С помощью КТ хорошо распознаются внутричерепные осложнения острых синуситов (эпидуральные и субдуральные абсцессы), вовлечение в воспалительный процесс клетчатки глазницы, внутричерепные гематомы при травмах челюстно-лицевой области.
Компьютерная томография позволяет точно определить локализацию поражений, провести дифференциальную диагностику заболеваний, планирование оперативных вмешательств и лучевой терапии.
8. Контрастные методы.
Среди многочисленных способов контрастных рентгенологических исследований при челюстно-лицевой патологии наиболее часто используются артрография височно-нижнечелюстных суставов, ангиография, сиалография, дакриоцистография.
Сиалография заключается в исследовании протоков крупных слюнных желез путем заполнения их йодсодержащими препаратами. С этой целью используют водорастворимые контрастные или эмульгированные масляные препараты (дианозил, ультражидкий липойодинол, этийдол, майодил и др.). Перед введением препараты подогревают до температуры 37—40 °С, чтобы исключить холодовый спазм сосудов.
Исследование проводят с целью диагностики преимущественно воспалительных заболеваний слюнных желез и слюнокаменной болезни.
В отверстие выводного протока исследуемой слюнной железы вводят специальную канюлю, тонкий полиэтиленовый или нелатоновый катетер диаметром 0,6—0,9 мм или затупленную и несколько загнутую инъекционную иглу. После бужирования протока катетер с мандреном, введенный в него на глубину 2—3 см, плотно охватывается стенками протока. Для исследования околоушной железы вводят 2—2,5 мл, поднижнечелюстной — 1 — 1,5 мл контрастного препарата.
Рентгенографию проводят в стандартных боковых и прямых проекциях, иногда выполняют аксиальные и тангенциальные снимки.
Введение контрастных веществ в кистозные образования осуществляют путем прокола стенки кисты. После отсасывания содержимого в полость вводят подогретое контрастное вещество. Рентгенограммы выполняют в двух взаимно перпендикулярных проекциях.
Контрастирование свищевых ходов (фистулография) выполняют с целью определения их связи с патологическим процессом или инородным телом. После введения контрастного вещества под давлением в свищевой ход производят рентгенограммы в двух взаимно перпендикулярных проекциях.
Для контрастирования артериальных и венозных сосудов челюстно-лицевой области (при образованиях, гемангиомах) контрастный препарат можно вводить тремя способами. Наиболее простым из них является пункция гемангиомы с введением контрастного вещества в толщу опухоли и регистрацией изображения на отдельных снимках. Чтобы получить представление о распространенности опухоли в прямой и боковой проекциях, пункцию выполняют 2 раза. Методика обеспечивает выявление характера венозных изменений, но не всегда позволяет увидеть детали кровотока, подходящие к гемангиоме сосуды, и не пригодна для контрастирования артериальной сосудистой сети.
При кавернозных гемангиомах и артериовенозных шунтах практикуют введение контрастных препаратов в приводящий сосуд, который выделяют операционным путем.
При пульсирующих артериальных и артериовенозных образованиях производят серийную ангиографию после введения контрастных препаратов в приводящий сосуд.
Целенаправленное комплексное использование в единой схеме обследования пациентов с патологией зубочелюстной области клинических и рентгенологических данных позволяет не только сделать более точной первичную и дифференциальную диагностику, но и объективно оценить эффективность проводимого лечения. Используя цифровое изображение, можно выполнить коррекцию искажений, благодаря улучшению визуальных характеристик добиться выявления тонких дифференциально-диагностических патологических состояний, осуществить передачу изображения по электронной почте для последующих консультаций специалистами.
Перспективы дальнейшего использования рентгенокомпьютерной сети в стоматологической практике связаны с увеличением технических возможностей современной рентген-аппаратуры, оптимизацией компьютерных программ для анализа изображения, а также разработкой рациональных диагностических алгоритмов комплексного клинико-рентгенологического обследования пациентов в зависимости от нозологической формы заболевания и задач предстоящего лечения.