Что такое log2 в формуле шеннона

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Информационная теория

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Обработка информации — важная техническая задача, чем, например, преобразование энергии из одной формы в другую. Важнейшим шагом в развитии теории информации стала работа Клода Шеннона (1948). Логарифмическое измерение количества данных было первоначальной теорией, и прикладными задачами по коммуникации в 1928 году. Наиболее известным является вероятностный подход к измерению информации, на основе которого представлен широкий раздел количественной теории.

Отличительная черта вероятностного подхода от комбинаторного состоит в том, что новые предположения об относительной занятости любой системы в разных состояниях и общего количества элементов не учитываются. Ряд информации взят из отсутствия неопределённости в выборе различных возможностей. В основе такого подхода лежат энтропийные и вероятностные множества.

Основная теорема Шеннона о кодировании

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Важный практический вопрос при обработке информации — какова мощность системы передачи данных. Можно получить определённый ответ, используя уравнение Шеннона. Оно позволяет точно понять информационную пропускную способность любого сигнального канала. Формула Шеннона в информатике: I = — (p1log2 p1 + p2 log2 p2 +. + pN log2 pN)

Основная теория Шеннона о кодировании для дискретного канала с помехой, приведённая здесь без доказательства, аналогична теореме канала не имеющего помех: если источник данных с энтропией H (Z), а канал связи имеет ширину полосы C, то сообщения, сгенерированные источником, всегда могут быть закодированы так, чтобы их скорость передачи vz была произвольно близка к значению: vzm = C | H (Z).

Не существует метода кодирования, который бы позволял передавать со скоростью, превышающей vzm, и с произвольно низкой вероятностью ошибки. Другими словами, если поток информации: H ‘(Z) = vz * H (Z) C он не существует.

Стоит рассмотреть сигнал, который эффективно передаётся (т. е. без избыточности) в виде зависящего от времени аналогового напряжения. Картина изменения в течение определённого интервала T позволяет приёмнику выявить, какое из возможных сообщений было фактически отправлено.

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Используя идею межсимвольного влияния, можно сказать, что, поскольку нет избыточности значения будут независимыми при условии, и они достаточно далеки друг от друга, чтобы их стоило отбирать отдельно. По сути, невозможно сказать, что одно из значений просто от знания другого. Конечно, для любого сообщения оба типа данных заранее определяются содержанием.

Но получатель не может знать, какое из всех возможных сообщений прибыло, пока оно не пришло. Если приёмник заранее знает, какое напряжение, должно быть, передано, то само сообщение не дало бы никакой новой информации! То есть получатель не будет знать больше после его прибытия, чем раньше.

Это приводит к замечательному выводу:

Именно поэтому случайный шум может привести к ошибкам в полученном сообщении. Статистические свойства эффективного сигнала аналогичны. Если шум был явно разным, приёмник мог легко отделить информацию и избежать каких-либо неполадок. Поэтому для обнаружения и исправления ошибок нужно сделать реальный сигнал менее «шумоподобным».

Условие применения формулы Шеннона — избыточность, создаёт предсказуемые отношения между различными участками сигнального устройства. Хотя это снижает эффективность передачи информации в системе, но помогает отличать детали сигнала от случайного шума. Здесь обнаружена максимально возможная информационная пропускная способность системы. Поэтому нужно избегать избыточности и позволять сигналу иметь «непредсказуемые» качества, которые делают его статистически похожим на случайный шум.

Передача сигналов

Реальный сигнал должен иметь конечную мощность. Следовательно, для этого набора сообщений должен быть некоторый максимально возможный уровень мощности. Это значит что напряжение тока сигнала ограничено к некоторому ряду. Это также означает, что мгновенное напряжение сигнала, должно быть, ограничено и не выступает за пределы диапазона. Аналогичный аргумент должен быть верен и для шума. Поскольку предполагается, что система эффективна, можно ожидать, сигнал и шум будут иметь аналогичные статистические свойства.

Это означает:

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

При передаче сигналов в присутствии шума нужно стараться, чтобы сигнал был больше и свести к минимуму эффекты шума. Поэтому можно ожидать, что система передачи информации применится и обеспечит, чтобы для каждого типичного сообщения сила почти равнялось некоторому максимальному значению.

Это означает, что в такой системе, большинство сообщений будет одинаковый уровень мощности. В идеале каждое ИС должно иметь одинаковый, максимально возможный уровень мощности. На самом деле можно повернуть этот аргумент с ног на голову и сказать, что «типичны» только сообщения со средними силами, подобными этому максимуму. Те, что обладают гораздо более низкими способностями, необычны — то есть редки.

Определённое уравнение

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Сигнал и шум не коррелированны, то есть они не связаны каким-либо образом, который позволит предсказать один из них. Суммарная мощность, получаемая при объединении этих некоррелированных ИС, по-видимому, случайно изменяющихся величин, задаётся.

Поскольку сигнал и шум статистически аналогичны, их комбинация будет иметь то же значение форм-фактора, что и сам сигнал или шум. Потому можно ожидать, что комбинированный сигнал и шум, как правило, будут ограничены диапазоном напряжения.

Стоит рассмотреть теперь разделение этого диапазона на полосы одинакового размера. (т. е. каждая из этих полос будет охватывать ИС.) Чтобы предоставить другую метку для каждой полосы, нужны символы или цифры. Поэтому всегда можно указать, какую полосу занимает уровень напряжения в любой момент с точки зрения B-разрядного двоичного числа. По сути, этот процесс является ещё одним способом описания того, что происходит, когда берут цифровые образцы с B-разрядным аналоговым преобразователем, работающим в общем диапазоне.

Нет никакого реального смысла в выборе значения, которое настолько велико. Это потому что шум кубика будет просто иметь тенденцию рандомизировать фактическое напряжение на эту сумму, делая любые дополнительные биты бессмысленными. В результате максимальное количество битов информации, которую можно получить относительно уровня в любой момент, будет определено.

Уравнение Шеннона может использовать:

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

При передаче информации некоторые параметры используемых сигналов могут приобретать случайный символ в канале связи, например, из-за многолучевого распространения радиоволн, гетеродинирующих сигналов. В результате амплитуда и начальная фаза данных являются случайными. Согласно статистической теории связи, эти особенности сигналов необходимы для их оптимальной обработки, они определяют как структуру приёмника, так и качество связи.

Хартли понимал информационное получение как подбор одного вида данных из набора равновероятного сообщения и определил объём, содержащейся ВС, как логарифм N. Выполняются примеры решения по формуле Хартли в информатике: N = mn.

Помехи разложения всегда присутствуют в границе любого реального сигнала. Однако, если их уровень настолько мал, что вероятность искажения практически равна нулю, можно условно предположить, что все сигналы передаются неискажёнными.

В этом случае средний объём информации, переносимой одним символом, можно считать расчётным: J (Z; Y) = Хапр (Z) — Хапест (Z) = Хапр (Y). Поскольку функция H (Y) = H (Z) и H (Y / Z) = 0, а индекс max = Hmax (Y) — максимальная энтропия источника класса сигнала, возникающая в результате распределения символов Y: p (y1) = p (y2) = … = p (ym) = 1 / My, т. е. Hmax (Y) = logaMy.

Следовательно, главная дискретная ширина полосы таблицы без информации о помехах в единицу времени равна: Cy = Vy • max = Vy • Hmax (Y) = Vy • logaMy или записываться Ck = Vk • logaMy. Где буква Mk — должно быть максимально возможное количество уровней, разрешённых для передачи по этому каналу (конечно, может обозначаться Mk = My).

Согласно теореме, метод кодирования онлайн, который может использоваться и позволяет:

Вероятностный подход к определению вычисления объёма информации — математический вывод формулы Шеннона не является удовлетворительным для метода оценки роли энтропии, отражения элементов системы и может не применяться. Как общий информатический объект невозможно допустить единый способ измерения и его правила.

Источник

Опорный конспект на тему «Формулы Хартли-Шеннона»

Формулы Хартли, Шеннона.

В 1928 г. американский инженер Р. Хартли предложил научный подход к оценке сообщений. Предложенная им формула имела следующий вид:

Иногда формулу Хартли записывают так:

т. к. каждое из К событий имеет равновероятный исход р = 1 / К, то К = 1 / р.

Шарик находится в одной из трех урн: А, В или С. Определить сколько бит информации содержит сообщение о том, что он находится в урне В.

Такое сообщение содержит I = log 2 3 = 1,585 бита информации.

Но не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или «правило бутерброда».

«Однажды в детстве я уронил бутерброд. Глядя, как я виновато вытираю масляное пятно, оставшееся на полу, старший брат успокоил меня:

— не горюй, это сработал закон бутерброда.

Проверили. Из десяти раз восемь бутерброд упал маслом вниз.

И тут я задумался: а можно ли заранее узнать, как сейчас упадет бутерброд маслом вниз или вверх?

Наши опыты прервала мать…»

( Отрывок из книги «Секрет великих полководцев», В.Абчук).

В 1948 г. американский инженер и математик К. Шеннон предложил формулу для вычисления количества информации для событий с различными вероятностями.

то количество информации для событий с различными вероятностями можно определить по формуле:

где i принимает значения от 1 до К.

Формулу Хартли теперь можно рассматривать как частный случай формулы Шеннона:

При равновероятных событиях получаемое количество информации максимально.

Физиологи и психологи научились определять количество информации, которое человек может воспринимать при помощи органов чувств, удерживать в памяти и подвергать обработке. Информацию можно представлять в различных формах: звуковой, знаковой и др. рассмотренный выше способ определения количества информации, получаемое в сообщениях, которые уменьшают неопределенность наших знаний, рассматривает информацию с позиции ее содержания, новизны и понятности для человека. С этой точки зрения в опыте по бросанию кубика одинаковое количество информации содержится в сообщениях «два», «вверх выпала грань, на которой две точки» и в зрительном образе упавшего кубика.

При передаче и хранении информации с помощью различных технических устройств информацию следует рассматривать как последовательность знаков (цифр, букв, кодов цветов точек изображения), не рассматривая ее содержание.

Молекулы ДНК (дезоксирибонуклеиновой кислоты) состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит. Информационная емкость знака этого алфавита составляет:

Каждая буква русского алфавита (если считать, что е=ё) несет информацию 5 бит (32 = 2 I ).

При таком подходе в результате сообщения о результате бросания кубика, получим различное количество информации, Чтобы его подсчитать, нужно умножить количество символов на количество информации, которое несет один символ.

Количество информации, которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на число знаков в сообщении.

Пример 1. Использование формулы Хартли для вычисления количества информации. Сколько бит информации несет сообщение о том, что

поезд прибывает на один из 8 путей?

где N – число равновероятностных исходов события, о котором речь идет в сообщении,

I – количество информации в сообщении.

I = log 2 8 = 3(бит) Ответ: 3 бита.

Модифицированная формула Хартли для неравновероятностных событий. Так как наступление каждого из N возможных событий имеет одинаковую вероятность

Количественная зависимость между вероятностью события (p) и количеством информации в сообщении о нем (I) выражается формулой:

Пример 2. В классе 30 человек. За контрольную работу по математике получено 6 пятерок, 15 четверок, 8 троек и 1 двойка. Сколько бит информации несет сообщение о том, что Иванов получил четверку?

Количественная зависимость между вероятностью события (p) и количество информации сообщения о нем (I)

вероятность события 15/30

количество информации в сообщении =log 2 (30/15)=log 2 2=1.

Использование формулы Шеннона. Общий случай вычисления количества информации в сообщении об одном из N, но уже неравновероятных событий. Этот подход был предложен К.Шенноном в 1948 году.

Основные информационные единицы:

I – информационный объем сообщения

Значение I ср достигает максимума при равновероятных событиях, то есть при равенстве всех p i p i = 1 / N.

В этом случае формула Шеннона превращается в формулу Хартли.

Будем считать, что вероятность появления символа в сообщении совпадает с частотой его появления в текстах. Поэтому буква «а» встречается со средней частотой 200/1000=0,2; Вероятность появления буквы “а” в тексте (p a )можем считать приблизительно равной 0,2;

Значение I ср достигает максимума при равновероятных событиях, то есть при равенстве всех p i

В этом случае формула Шеннона превращается в формулу Хартли.

При составлении таблицы мы должны учитывать:

Ввод данных (что дано в условии).

Подсчет общего количества числа возможных исходов (формула N=K 1 +K 2 +…+K i ).

Подсчет вероятности каждого события (формула p i = К i /N).

Подсчет количества информации о каждом происходящем событии (формула I i = log 2 (1/p i )).

Подсчет количества информации для событий с различными вероятностями (формула Шеннона).

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

В классе 30 человек. За контрольную работу по информатике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации несет сообщение о том, что Андреев получил пятерку?

В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

Источник

Формула Шеннона — выводы, условия применения и примеры решения

Информация является основой информатики и в то же время — одним из главных направлений технической кибернетики. Основателем теории информации является американский инженер Клод Шеннон. Рассматриваемая теорема учёного, методы оценки количества дискретной непрерывной информации, теория передачи сообщений и формула Шеннона являются важными в науке.

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Информационная теория

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Обработка информации — важная техническая задача, чем, например, преобразование энергии из одной формы в другую. Важнейшим шагом в развитии теории информации стала работа Клода Шеннона (1948). Логарифмическое измерение количества данных было первоначальной теорией, и прикладными задачами по коммуникации в 1928 году. Наиболее известным является вероятностный подход к измерению информации, на основе которого представлен широкий раздел количественной теории.

Отличительная черта вероятностного подхода от комбинаторного состоит в том, что новые предположения об относительной занятости любой системы в разных состояниях и общего количества элементов не учитываются. Ряд информации взят из отсутствия неопределённости в выборе различных возможностей. В основе такого подхода лежат энтропийные и вероятностные множества.

Основная теорема Шеннона о кодировании

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Важный практический вопрос при обработке информации — какова мощность системы передачи данных. Можно получить определённый ответ, используя уравнение Шеннона. Оно позволяет точно понять информационную пропускную способность любого сигнального канала. Формула Шеннона в информатике: I = — (p1log2 p1 + p2 log2 p2 +. + pN log2 pN)

Основная теория Шеннона о кодировании для дискретного канала с помехой, приведённая здесь без доказательства, аналогична теореме канала не имеющего помех: если источник данных с энтропией H (Z), а канал связи имеет ширину полосы C, то сообщения, сгенерированные источником, всегда могут быть закодированы так, чтобы их скорость передачи vz была произвольно близка к значению: vzm = C | H (Z).

Не существует метода кодирования, который бы позволял передавать со скоростью, превышающей vzm, и с произвольно низкой вероятностью ошибки. Другими словами, если поток информации: H ‘(Z) = vz * H (Z) C он не существует.

Стоит рассмотреть сигнал, который эффективно передаётся (т. е. без избыточности) в виде зависящего от времени аналогового напряжения. Картина изменения в течение определённого интервала T позволяет приёмнику выявить, какое из возможных сообщений было фактически отправлено.

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Используя идею межсимвольного влияния, можно сказать, что, поскольку нет избыточности значения будут независимыми при условии, и они достаточно далеки друг от друга, чтобы их стоило отбирать отдельно. По сути, невозможно сказать, что одно из значений просто от знания другого. Конечно, для любого сообщения оба типа данных заранее определяются содержанием.

Но получатель не может знать, какое из всех возможных сообщений прибыло, пока оно не пришло. Если приёмник заранее знает, какое напряжение, должно быть, передано, то само сообщение не дало бы никакой новой информации! То есть получатель не будет знать больше после его прибытия, чем раньше.

Это приводит к замечательному выводу:

Именно поэтому случайный шум может привести к ошибкам в полученном сообщении. Статистические свойства эффективного сигнала аналогичны. Если шум был явно разным, приёмник мог легко отделить информацию и избежать каких-либо неполадок. Поэтому для обнаружения и исправления ошибок нужно сделать реальный сигнал менее «шумоподобным».

Условие применения формулы Шеннона — избыточность, создаёт предсказуемые отношения между различными участками сигнального устройства. Хотя это снижает эффективность передачи информации в системе, но помогает отличать детали сигнала от случайного шума. Здесь обнаружена максимально возможная информационная пропускная способность системы. Поэтому нужно избегать избыточности и позволять сигналу иметь «непредсказуемые» качества, которые делают его статистически похожим на случайный шум.

Передача сигналов

Реальный сигнал должен иметь конечную мощность. Следовательно, для этого набора сообщений должен быть некоторый максимально возможный уровень мощности. Это значит что напряжение тока сигнала ограничено к некоторому ряду. Это также означает, что мгновенное напряжение сигнала, должно быть, ограничено и не выступает за пределы диапазона. Аналогичный аргумент должен быть верен и для шума. Поскольку предполагается, что система эффективна, можно ожидать, сигнал и шум будут иметь аналогичные статистические свойства.

Это означает:

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

При передаче сигналов в присутствии шума нужно стараться, чтобы сигнал был больше и свести к минимуму эффекты шума. Поэтому можно ожидать, что система передачи информации применится и обеспечит, чтобы для каждого типичного сообщения сила почти равнялось некоторому максимальному значению.

Это означает, что в такой системе, большинство сообщений будет одинаковый уровень мощности. В идеале каждое ИС должно иметь одинаковый, максимально возможный уровень мощности. На самом деле можно повернуть этот аргумент с ног на голову и сказать, что «типичны» только сообщения со средними силами, подобными этому максимуму. Те, что обладают гораздо более низкими способностями, необычны — то есть редки.

Определённое уравнение

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

Сигнал и шум не коррелированны, то есть они не связаны каким-либо образом, который позволит предсказать один из них. Суммарная мощность, получаемая при объединении этих некоррелированных ИС, по-видимому, случайно изменяющихся величин, задаётся.

Поскольку сигнал и шум статистически аналогичны, их комбинация будет иметь то же значение форм-фактора, что и сам сигнал или шум. Потому можно ожидать, что комбинированный сигнал и шум, как правило, будут ограничены диапазоном напряжения.

Стоит рассмотреть теперь разделение этого диапазона на полосы одинакового размера. (т. е. каждая из этих полос будет охватывать ИС.) Чтобы предоставить другую метку для каждой полосы, нужны символы или цифры. Поэтому всегда можно указать, какую полосу занимает уровень напряжения в любой момент с точки зрения B-разрядного двоичного числа. По сути, этот процесс является ещё одним способом описания того, что происходит, когда берут цифровые образцы с B-разрядным аналоговым преобразователем, работающим в общем диапазоне.

Нет никакого реального смысла в выборе значения, которое настолько велико. Это потому что шум кубика будет просто иметь тенденцию рандомизировать фактическое напряжение на эту сумму, делая любые дополнительные биты бессмысленными. В результате максимальное количество битов информации, которую можно получить относительно уровня в любой момент, будет определено.

Уравнение Шеннона может использовать:

Что такое log2 в формуле шеннона. Смотреть фото Что такое log2 в формуле шеннона. Смотреть картинку Что такое log2 в формуле шеннона. Картинка про Что такое log2 в формуле шеннона. Фото Что такое log2 в формуле шеннона

При передаче информации некоторые параметры используемых сигналов могут приобретать случайный символ в канале связи, например, из-за многолучевого распространения радиоволн, гетеродинирующих сигналов. В результате амплитуда и начальная фаза данных являются случайными. Согласно статистической теории связи, эти особенности сигналов необходимы для их оптимальной обработки, они определяют как структуру приёмника, так и качество связи.

Хартли понимал информационное получение как подбор одного вида данных из набора равновероятного сообщения и определил объём, содержащейся ВС, как логарифм N. Выполняются примеры решения по формуле Хартли в информатике: N = mn.

Помехи разложения всегда присутствуют в границе любого реального сигнала. Однако, если их уровень настолько мал, что вероятность искажения практически равна нулю, можно условно предположить, что все сигналы передаются неискажёнными.

В этом случае средний объём информации, переносимой одним символом, можно считать расчётным: J (Z; Y) = Хапр (Z) — Хапест (Z) = Хапр (Y). Поскольку функция H (Y) = H (Z) и H (Y / Z) = 0, а индекс max = Hmax (Y) — максимальная энтропия источника класса сигнала, возникающая в результате распределения символов Y: p (y1) = p (y2) = … = p (ym) = 1 / My, т. е. Hmax (Y) = logaMy.

Следовательно, главная дискретная ширина полосы таблицы без информации о помехах в единицу времени равна: Cy = Vy • max = Vy • Hmax (Y) = Vy • logaMy или записываться Ck = Vk • logaMy. Где буква Mk — должно быть максимально возможное количество уровней, разрешённых для передачи по этому каналу (конечно, может обозначаться Mk = My).

Согласно теореме, метод кодирования онлайн, который может использоваться и позволяет:

Вероятностный подход к определению вычисления объёма информации — математический вывод формулы Шеннона не является удовлетворительным для метода оценки роли энтропии, отражения элементов системы и может не применяться. Как общий информатический объект невозможно допустить единый способ измерения и его правила.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *