Что такое log в математике
Что такое логарифм. Как посчитать логарифм. Свойства логарифмов. Примеры решения логарифмов
Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.
Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.
В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.
Итак, давайте разбираться, что такое логарифм.
Что такое логарифм и как его посчитать
Логарифм имеет следующий вид:
где a – это основание логарифма,
b – это аргумент логарифма
Чтобы узнать значение логарифма приравняем его к X.и преобразовываем в
Запомните, что именно основание (оно выделено красным) возводится в степень.
Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!
Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:
Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.
Логарифмы со специальным обозначением
Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.
Десятичный логарифм
Десятичный логарифм обозначается lg и имеет основание 10, т.е.
Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.
Например, вычислим lg100
Натуральный логарифм
Натуральный логарифм обозначается ln и имеет основание e, то есть
Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…
Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что
И вычислить его можно таким образом:
Основные свойства логарифмов
Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:
Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!
Рассмотрим свойства логарифмов на примерах.
Логарифмический ноль и логарифмическая единица
Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.
Запомните, что логарифм от a по основанию а всегда равен единице:
loga a = 1 – это логарифмическая единица.
Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:
loga 1 = 0 – логарифмический ноль.
Основное логарифмическое тождество
В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.
Вторая формула по сути является просто переформулированным определением логарифма
Разберем применение тождества на примере:
Необходимо найти значение выраженияСначала преобразуем логарифм
Вернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:
Теперь применим основное логарифмическое тождество и получим:
Сумма логарифмов. Разница логарифмов
Логарифмы с одинаковыми основаниями можно складывать:Логарифмы с одинаковыми основаниями можно вычитать:
Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!
Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!
Вынесение показателя степени из логарифма
Вынесение показателя степени из логарифма:
Переход к новому основанию
Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.
Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.
Разберем на примере.
Необходимо найти значение такого выраженияДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:
Теперь применим переход к новому основанию для второго логарифма:Подставим полученные результаты в исходное выражение:
10 примеров логарифмов с решением
1. Найти значение выражения2. Найти значение выражения
3. Найти значение выражения
4. Найти значение выражения
5. Найти значение выражения
6. Найти значение выражения
Сначала найдем значение
Для этого приравняем его к Х:
Тогда изначальное выражение принимает вид:
7. Найти значение выражения
Преобразуем наше выражение:
Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим:
8. Найти значение выражения
Так как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:
9. Найти значение выражения
Так как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:
Подставляем полученные значения в исходное выражение:
10. Найти значение выраженияОбращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:
Надеюсь, теперь вы разобрались, что такое логарифм.
Что такое логарифм
Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.
Мы же определим логарифм просто и наглядно. Для этого составим таблицу:
2 1 | 2 2 | 2 3 | 2 4 | 2 5 | 2 6 |
2 | 4 | 8 | 16 | 32 | 64 |
Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.
А теперь — собственно, определение логарифма:
Например, 2 3 = 8 ⇒ log2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log2 64 = 6, поскольку 2 6 = 64.
2 1 | 2 2 | 2 3 | 2 4 | 2 5 | 2 6 |
2 | 4 | 8 | 16 | 32 | 64 |
log2 2 = 1 | log2 4 = 2 | log2 8 = 3 | log2 16 = 4 | log2 32 = 5 | log2 64 = 6 |
Если взять калькулятор и посчитать, чему равны такие логарифмы, то получатся очень длинные числа. Взгляните сами:
log2 5 = 2,32192809.
log3 8 = 1,89278926.
log5 100 = 2,86135311.
Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log2 5, log3 8, log5 100.
Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:
Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень, в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.
Как считать логарифмы
С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:
Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.
Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.
Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:
Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.
Посмотрим, как работает эта схема на конкретных примерах:
Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.
Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.
8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;
Заметим также, что сами простые числа всегда являются точными степенями самих себя.
Десятичный логарифм
Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.
Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.
Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log10 x
Все, что верно для обычных логарифмов, верно и для десятичных.
Натуральный логарифм
Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.
Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x
Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.
Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.
Логарифмы и их свойства
Обычно определение логарифма дают очень сложно и запутанно. Мы постараемся сделать это очень просто и наглядно.
Для того, чтобы разобраться, что такое логарифм, давайте рассмотрим пример:
Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.
Теперь при помощи этой таблицы введем понятие логарифма.
Логарифм от числа 32 по основанию 2 (\(log_<2>(32)\)) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:
Аналогично, глядя в таблицу получим, что:
Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.
Теперь дадим определение логарифма в общем виде:
Логарифмом положительного числа \(b\) по основанию положительно числа \(a\) называется степень \(c\), в которую нужно возвести число \(a\), чтобы получить \(b\)
Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:
Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:
Или логарифм шести по основанию 4:
На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!
Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм \(log_<4>(6)\). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6ке:
Значит \(log_<4>(6)\) принадлежите промежутку от 1 до 2:
Как посчитать логарифм
Почему так? Это следует из определения показательной функций. Показательная функция не может быть \(0\). А основание не равно \(1\), потому что тогда логарифм теряет смысл – ведь \(1\) в любой степени это будет \(1\).
При этих ограничениях логарифм существует.
В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.
Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.
Теперь давайте разберем общий алгоритм вычисления логарифмов:
Давайте разберем на примерах.
Пример 1. Посчитать логарифм \(9\) по основанию \(3\): \(log_<3>(9)\)
Пример 2. Вычислить логарифм \(\frac<1><125>\) по основанию \(5\): \(log_<5>(\frac<1><125>)\)
Пример 3. Вычислить логарифм \(4\) по основанию \(64\): \(log_<64>(4)\)
Пример 4. Вычислить логарифм \(1\) по основанию \(8\): \(log_<8>(1)\)
Пример 5. Вычислить логарифм \(15\) по основанию \(5\): \(log_<5>(15)\)
Как понять, что некоторое число \(a\) не будет являться степенью другого числа \(b\). Это довольно просто – нужно разложить \(a\) на простые множители.
\(16\) разложили, как произведение четырех двоек, значит \(16\) будет степенью двойки.
Разложив \(48\) на простые множители, видно, что у нас есть два множителя \(2\) и \(3\), значит \(48\) не будет степенью.
Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.
Десятичный логарифм
Натуральный логарифм
Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.
У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.
Свойства логарифмов
Давайте разберем несколько примеров на свойства логарифмов.
Пример 8. Воспользоваться формулой \(3\). Логарифм от произведения – это сумма логарифмов.
Пример 9. Воспользоваться формулой \(4\). Логарифм от частного – это разность логарифмов.
Пример 10. Формула \(5,6\). Свойства степени.
Логично, что будет выполняться и такое соотношение:
Пример 11. Формулы \(7,8\). Переход к другому основанию.
Свойства логарифмов и примеры их решений
Зачем в жизни нужны логарифмы?
Я уже говорил, что математики СУПЕРленивые люди? Это правда.
Вот представь себе, им лень умножать и они придумали логарифмы, которые позволяют заменить умножение сложением!
Им еще больше лень возводить в степень и они используют логарифмы, чтобы заменить возведение в степень умножением или делением!
То есть они используют логарифмы, чтобы быстро проделывать громоздкие вычисления.
Логарифм и его свойства. Вебинар (1 час 48 минут)
В этом видео мы разобрали свойства логарифмов на примере решения 35 задач.
Начиная от самых простых логарифмов и заканчивая сложными.
Если вам понравилось видео, подписывайтесь на канал, ставьте лайки — нам будет приятно и мы будем делать такие видео впредь.
Что такое логарифм?
Для начинающих объясним все человеческим языком. Логарифмы – очень простая тема.
Чтобы понять, как их решать, нужно всего лишь разобраться, что как называется, знать таблицу умножения и уметь возводить в число в степень.
Все. Больше ничего не нужно.
Начнем с простого. Как решить уравнение \(\displaystyle <<2>^
Очень легко – просто ответь на вопрос в какую степень нужно возвести число \(2\) чтобы получить \(8\)?
Решаем методом подбора: два в первой степени – нет, два во второй степени – нет, два в третей степени – ДА!
Двойку нужно возвести в ТРЕТЬЮ степень, чтобы получить восемь (\(\displaystyle <<2>^<3>>=8\)) и значит решением уравнения будет число три (\(x=3\)).
Следующий вопрос. Как решить уравнение \(\displaystyle <<2>^
Опять просто ответь на вопрос в какую степень нужно возвести число \(2\), чтобы получить число \(5\)?
Попытаемся подобрать: два во второй степени равно четыре – мало, два в третьей степени равно восемь – много.
Метод подбора сразу ответ не дает… Да и вообще, в этом случае подобрать решение не получится – ведь это не только нецелое число, это число даже не рациональное.
Для нахождения таких решений было придумано понятие логарифм:
В общем виде он записывается так:
То есть логарифм – это степень, в которую нужно возвести основание, чтобы получить аргумент.
Если ты посчитаешь на калькуляторе, то получишь \(2,321928\ldots \) и т.д. Это число иррациональное. Оно мало того, что не подбирается, оно еще и не кончается…
Ну и как с такими числами работать? Как их запоминать? Как их записывать?
В нашем случае решение уравнения можно записать как \(2,321928\ldots \) или как \(\displaystyle <<\log >_<2>>5\).
Согласись второе выражение гораздо удобнее, чем первое. И оно, кстати, абсолютно точное. Словами это произносится как:
Решением уравнения два в степени икс равно пяти является логарифм пяти по основанию два, или логарифм по основанию два от пяти.
Кстати, а ты заметил что и у степени числа и у логарифма основание всегда находится «ВНИЗУ». Легко запомнить правда? А вот «вверху», у степени находится ее показатель, а у логарифма – аргумент.
Выражение \(\displaystyle <<2>^<3>>=8\) можно также записать в виде \(\displaystyle <<\log >_<2>>8=3\). Читается так:
«Логарифм восьми по основанию два равен трем»
«Логарифм по основанию два от восьми равен трем»
Теперь более общая запись:
«Чтобы получить число \(b\), нужно число \(a\) возвести в степень \(c\)»:
8 примеров вычисления логарифмов
Пример 1
Чему равен \(\displaystyle <<\log >_<2>>4\)?
\(\displaystyle <<\log >_<2>>4=2\), так как число \(2\) нужно возвести во вторую степень, чтобы получить \(4\).
Пример 2
Чему равен \(\displaystyle <<\log >_<2>>\frac<1><8>\)?
Заметим, что \(\displaystyle 8=<<2>^<3>>\), тогда \(\displaystyle \frac<1><8>=\frac<1><<<2>^<3>>>=<<2>^<-3>>\), то есть \(2\) нужно возвести в степень \(-3\), чтобы получить \(\displaystyle \frac<1><8>\).
Пример 3
А чему равен \(\displaystyle <<\log >_<2>>0,25\)?
Обращать внимание нужно, в первую очередь, на основание. Возможно ли представить \(0,25\) как \(2\) в какой-то степени? Да, возможно: запишем это число в виде обычной дроби: \(\displaystyle 0,25=\frac<1><4>=\frac<1><<<2>^<2>>>=<<2>^<-2>>\).
Пример 4
Чему равен \(\displaystyle <<\log >_<7>>1\)?
В какую степень надо возвести \(7\), чтобы получить \(1\)? Вспоминаем, что любое число в нулевой степени равно \(1\) (подробнее читай в разделе «Степень и ее свойства»).
Значит, \(\displaystyle <<\log >_<7>>1=0\). Более того, логарифм с любым основанием от единицы равен \(0\).
Пример 5
\(\displaystyle <<\log >_<4>>2\). В этом случае аргумент \(2\) равен корню основания: \(\displaystyle 2=\sqrt<4>\).
Но мы помним, что корень тоже можно представить в виде степени (с дробным показателем): \(\displaystyle 2=\sqrt<4>=<<4>^<\frac<1><2>>>\text< >\Rightarrow \text< ><<\log >_<4>>2=\frac<1><2>\).
Попробуй найти следующие 4 логарифма самостоятельно
Десятичные логарифмы
Логарифм по основанию \(\displaystyle 10\) называется десятичным логарифмом и записывается упрощенно: \(\displaystyle \lg \) вместо \(\displaystyle <<\log >_<10>>\)
Когда нужная степень не подбирается
Как я уже говорил, далеко не всегда удается подобрать такую степень. Но это не значит, что такого числа не существует, просто его можно вычислить только на калькуляторе.
Например, \(\displaystyle <<\log >_<2>>5=2,321928…\).
Видим, что это число расположено между \(\displaystyle 2\) и \(\displaystyle 3\), и это понятно: ведь это значит, чтобы получить \(5\), нужно \(2\) возводить в степень больше \(2\), но меньше \(3\).
На ЕГЭ пользоваться калькулятором нельзя, но даже если бы было можно, нельзя записывать приближенные вычисления.
Поэтому, если перед нами задача первой части, ответ обязательно должен получиться «хороший», и его можно посчитать в уме.
В письменной части могут попасться и «плохие» числа; в этом случае пугаться не нужно, в ответе можно просто написать логарифм.
Например, ответ вполне может выглядеть так:
\(\displaystyle <<\log >_<3>>10\), или даже так: \(\displaystyle \frac<2+<<\log >_<3>>7><5>\).
Получается, что теперь мы можем мгновенно записать решение любого элементарного показательного уравнения:
Но увлекаться и халтурить тоже не стоит – если в ответе оставить \(\displaystyle x=<<\log >_<3>>81\), высший балл за задачу не поставят.
То есть, если ответ возможно упростить и представить в виде рационального числа, это обязательно нужно будет сделать.
Потренируйся на следующих простых примерах:
6 примеров для самостоятельной работы
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Область допустимых значений (ОДЗ)логарифма
Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:
То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться \( 1\).
Начнем с простого: допустим, что \( a=1\). Тогда, например, число не существует, так как в какую бы степень мы не возводили \( 1\), всегда получается \( 1\).
Более того, \( \displaystyle <<\log >_<1>>b\) не существует ни для какого \( \displaystyle b\ne 1\).
Но при этом \( \displaystyle <<\log >_<1>>1\) может равняться чему угодно (по той же причине – \( 1\) в любой степени равно \( 1\)).
Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.
Похожая проблема у нас и в случае \( a=0\): \( 0\) в любой положительной степени – это \( 0\), а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что \( \displaystyle <^<-c>>=\frac<1><<^
При \( a 0\\x\ne 1\\x+2>0\end
Пример 1 (попробуй решить самостоятельно)
Найдите корень уравнения \( \displaystyle <<\log >_
Решение:
\( \displaystyle <<\log >_
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Основное логарифмическое тождество
Вспомним определение логарифма в общем виде:
Подставим во второе равенство вместо \( \displaystyle c\) логарифм:
Это равенство называется основным логарифмическим тождеством. Хотя по сути это равенство – просто по-другому записанное определение логарифма:
Реши еще следующие примеры:
Пример 2
Найдите значение выражения \( \displaystyle <<25>^<<<\log >_<5>>3>>\).
Пример 3
Решения примеров 2 и 3:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Свойства логарифмов
К сожалению, задачи не всегда такие простые – зачастую сперва нужно упростить выражение, привести его к привычному виду, и только потом будет возможно посчитать значение.
Это проще всего сделать, зная свойства логарифмов.
Так что давай выучим основные свойства логарифмов. Каждое из них я буду доказывать, ведь любое правило проще запомнить, если знать, откуда оно берется.
Все эти свойства нужно обязательно запомнить, без них большинство задач с логарифмами решить не получится.
А теперь обо всех свойствах логарифмов подробнее.
Свойство 1 – степень аргумента
Доказательство:
Свойство 2 – сумма логарифмов
Сумма логарифмов с одинаковыми основаниями равна логарифму произведения: \( \displaystyle <<\log >_>b+<<\log >_>c=<<\log >_>\left( b\cdot c \right)\).
Доказательство:
Пример
Найдите значение выражения: \( \displaystyle <<\log >_<3>>5+<<\log >_<3>>0,6\).
Решение:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
А вот обещанное упрощение:
Зачем это нужно? Ну например: чему равно \( \displaystyle lo<
Теперь упрости сам:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Свойство 3 – разность логарифмов
Разность логарифмов с одинаковыми основаниями равна логарифму частного:\( \displaystyle lo< |
Доказательство:
Все точно так же, как и в пункте 2:
Пример из прошлого пункта теперь становится еще проще:
Пример посложнее: \( \displaystyle \log _<2>^<2>2\sqrt<3>-\log _<2>^<2>\sqrt<3>—<<\log >_<2>>3\).
Догадаешься сам, как решить?
Здесь нужно заметить, что у нас нету ни одной формулы про логарифмы в квадрате. Это что-то сродни выражению \( \displaystyle <<2>^<<
Поэтому отвлечемся от формул про логарифмы, и подумаем, какие вообще формулы мы используем в математике чаще всего? Еще начиная с 7 класса!
Это – формулы сокращенного умножения. Нужно привыкнуть к тому, что они везде! И в показательных, и в тригонометрических, и в иррациональных задачах они встречаются. Поэтому их нужно обязательно помнить.
Нажми на ссылку «Формулы сокращенного умножения», и внимательно на них посмотри. Какую из них можно применить здесь?
Если присмотреться к первым двум слагаемым, становится ясно, что это разность квадратов:
Дальше все просто – применяем только что выученные правила 2 и 3. Что получилось?
Ответ для проверки:
Упрости сам:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Свойство 4 – вынесение показателя степени из аргумента логарифма
Если в аргументе логарифма стоит степень, показатель этой степени можно вынести за знак логарифма: \( \displaystyle <<\log >_><^
>=n\cdot <<\log >_>b\)
Доказательство:
Можно понять это правило так:
То есть степень аргумента выносится вперед логарифма, как коэффициент.
Пример: Найдите значение выражения \( \displaystyle \frac<<<\log >_<2>>25><<<\log >_<2>>5>\).
Реши сам:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Свойство 5 – вынесение показателя степени из основания логарифма
Доказательство:
Запоминаем: из основания степень выносится как обратное число, в отличии от предыдущего случая!
Свойство 6 – вынесение показателя степени из основания и аргумента логарифма
Если в основании и аргументе логарифма стоят степени, показатели этих степеней можно вынести за знак логарифма: \( \displaystyle <<\log >_<<^
>>><^ >=\frac \cdot <<\log >_>b\).
Свойство 7 – переход к новому основанию
Если основания логарифмов разные, то для того чтобы дальше работать с логарифмами нужно перейти к логарифмам с одним основанием: \( \displaystyle <<\log >_>b=\frac<<<\log >_
>b><<<\log >_ >a>\text< >\left( c>0;\text< >\ne \text <1>\right)\).
Доказательство:
Свойство 8 – замена местами основания и аргумента логарифма
Можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе: \( \displaystyle <<\log >_>b=\frac<1><<<\log >_>a>,\text< >\left( b\ne 1 \right)\).
Доказательство:
Рассмотрим еще несколько примеров.
Пример 1. Найдите значение выражения \( \displaystyle <<\log >_<5>>75+<<\log >_<5>>\frac<1><3>\).
Пример 2. Найдите значение выражения \( \displaystyle <<\log >_<3>>36-2<<\log >_<3>>2\).
Пример 3. Найдите значение выражения \( \displaystyle <<\log >_<8\sqrt[5]<4>>>\left( 32\sqrt[5] <2>\right)\).
Пример 4. Найдите значение выражения \( \displaystyle \frac<\log _<5>^<2>25\sqrt<10>-\log _<5>^<2>\sqrt<10>><<<\log >_<5>>250>.\).
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Наши курсы по подготовке к ЕГЭ по математике, информатике и физике
Курсы для тех, кому нужно получить 90+ и поступить в топовый ВУЗ страны.
Твой ход!
Теперь ты знаешь о логарифмах все! Самое время покорять уравнения и неравенства!
Я уверен, что ты справишься. И я очень тобой горжусь. Ведь ты решил сесть и разобраться.
Напиши нам в комментариях ниже, что думаешь об этой статье. Все ли было понятно? Понравилась ли она тебе?
А еще ты можешь задать нам любой вопрос. И мы обязательно ответим!
Добавить комментарий Отменить ответ
20 комментариев
Отличный материал! Спасибо!
Спасибо, Саид. В каком вы классе?
Вы — это просто чу-до, и этот учебник тоже! Если бы я знала о вас в сентябре, я бы выбрала вашу онлайн школу
Спасибо большое, Бася! Очень приятно слышать. Желаем вам сдать ЕГЭ на 100 баллов! )
Как лайк поставить?
Будем считать этот коммент лайком. Спасибо!
хотела зарегистрироваться на вебинар 14 февраля, но не смогла: «сайт не может обеспечить безопасное соединение» может есть еще вариант?
Надежда, я зарегистрировал вас и отправил на почту доступы. Скажите, пожалуйста, где вы столкнулись с такой надписью? Можете написать или отправить ссылку?
Большое спасибо, все изложено четко и красиво!
Инна, очень рады, что понравилось! Заходите к нам еще! )
Это лучшее объяснение, что я встречала! Хорошая методика: простой язык, примеры и практика! Я благодарна Клеверу!
Спасибо, Ника! И за название тоже. «Клевер» — клёво! ))
Некоторые комментарии прошлых лет к этой статье:
Катерина
10 января 2018
Я получила очень хорошую для меня информацию.
Александр (Админ)
11 января 2018
Спасибо, Катерина. Нам очень приятно слышать, что наш учебник полезен.
Владимир
17 января 2018
Прекрасное объяснение! Просто великолепное! В примере после третьего свойства действительно есть опечатка. знак корня у третьего члена лишний. Есть также потерянный член в конце предпоследней строчки решения пятой задачи третьего свойства. В финальной строчке он нашелся 🙂
Алексей Шевчук
06 февраля 2018
Александр, примени свойство степени «произведение степеней с одинаковым основанием»: https://youclever.org/book/stepen-i-ee-svojstva
Дарья
10 декабря 2018
А как решать функцию логарифмическую, если логарифм под знаком модуля? Например y=[lgx]-lgx?
Шура
24 января 2019
Как сложить логарифмы если у обоих аргумент x, но у первого основание 2, а у второго 3?
Алексей Шевчук
04 февраля 2019
Шура, нужно воспользоваться формулой перехода к другому основанию Например, log_3 (x) = log_2 (x) / log_2 (3).
Олег
14 апреля 2019
Большое спасибо за очередную великолепную статью, все понятно.
Александр (админ)
14 апреля 2019
Олег, очень рады слышать! Удачи!
Олег
17 апреля 2019
Спасибо за статью, но СЛОЖНА
Александр (админ)
17 апреля 2019
Пожалуйста, Олег. Ну что поделать? Тяжело в ученье, легко на ЕГЭ )
Саня
06 сентября 2019
А что делать, если логарифмы с разными приколами? 0-0 Как их решать?
Алексей Шевчук
06 сентября 2019
Саня, посмотри статью про логарифмические уравнения, там некоторые приколы разобраны. https://youclever.org/book/logarifmicheskie-uravneniya-1
Алексей Шевчук
08 ноября 2019
Виталий, дело в том, что такие уравнения будут иметь действительные решения очень редко. Представим себе, что это уравнение (-2)^6x=-8. Тогда с одной стороны, x=0.5 является решением, но с другой стороны, когда мы решаем уравнение, у нас должна быть возможность воспользоваться свойствами степени: (-2)^6x = ((-2)^x)^6 — а теперь посмотрим, можем ли мы так делать? Подставим вместо x число 0.5: ((-2)^0.5)^6=-8. Вспомним, что такое степень 0.5? Это квадратный корень из числа. Но ведь мы не можем извлекать корень из отрицательного числа! Чтобы не возникало таких неприятностей, математики договорились не использовать отрицательные основания у показательной функции, а как следствие, и у логарифма. Но это касается только вычислений в действительных числах. Если мы рассматриваем также комплексные числа (это в которых можно извлекать корень из отрицательных чисел), то отрицательные основания возможны — но это уже не школьная математика.
Александр (админ)
08 ноября 2019
Отличное объяснение, Алексей! Снова вышли за пределы школьной математики. Это здорово! )
Виталий
12 ноября 2019
Спасибо за ответ. Понял, что это для облегчения начальной стадия обучения, с последующим переходом к более сложным вычислениям.
Антон
16 декабря 2019
Классное объяснение, спасибо!
Александр (админ)
16 декабря 2019
Антон, спасибо! Мы рады, что понравилось. Заходи еще! )
Света
07 января 2020
Спасибо очень понравилась то что не было не понятно все поняла
Александр (админ)
07 января 2020
Отлично, Света! Мы очень рады. Удачи тебе на экзаменах!
Александр (админ)
13 января 2020
То, что не нравится Полине Магаррамовой я переживу как-нибудь. Мне главное, чтобы вам нравилось 🙂
Евгений Вячеславович
06 февраля 2020
Классно… Если бы мне 19 лет назад так объясняли бы математику, я бы к егэ вообще не готовился бы, потому что все бы помнил и понимал. Так доходчиво и понятно я не встречал нигде. Спасибо вам.
Александр (админ)
06 февраля 2020
Спасибо, Евгений Вячеславович. Я вот тоже самое думаю, что, если бы мне объясняли также как здесь в свое время…. ))
Юлия Владимировна
13 мая 2020
Помогите решить: 2*log 1/2 (4x-5) — log1/2 *16x = log1/2(x-3)
Алексей Шевчук
14 мая 2020
Юлия Владимировна, двойку вносим в логарифм как степень аргумента: 2*log 1/2 (4x-5)=log 1/2 (4x-5)^2. Потом соединяем логарифмы по правилу вычитания: log 1/2 [(4x-5)^2 / 16x] = log1/2(x-3). Теперь можно от логарифмов избавиться: (4x-5)^2 /16x = (x-3) — получили обычное уравнение
Жахиян
27 мая 2020
В какую степень нужно возвести число 2 чтобы получить 8? как ответ может быть 3. По идей ответ дожен быть равно на 4 а не к 3.
Александр (админ)
27 мая 2020
Жахиян, вы говорите на какое число нужно УМНОЖИТЬ 2, чтобы получить 8. Это действительно 4. Но вопрос был В КАКУЮ СТЕПЕНЬ нужно возвести 2 чтобы получить 8. А это тройка: «два в третьей степени будет восемь» (2*2*2=8)
ООО,спасибо за последние слова,лучший сайт.