Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, функция ln x

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· опрСдСлСния, основаниСм Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° являСтся число Π΅:
Π΅ β‰… 2,718281828459045. ;
.

Π“Ρ€Π°Ρ„ΠΈΠΊ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ln x

ΠŸΡ€ΠΈ x β†’ 0 ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° являСтся минус Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ ( – ∞ ).

ΠŸΡ€ΠΈ x β†’ + ∞ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° являСтся плюс Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ ( + ∞ ). ΠŸΡ€ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… x Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ возрастаСт довольно ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ. Π›ΡŽΠ±Π°Ρ стСпСнная функция x a с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ стСпСни a растСт быстрСС Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.

Бвойства Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°

ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния, мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, экстрСмумы, возрастаниС, ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ являСтся ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, поэтому экстрСмумов Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° прСдставлСны Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅.

ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния0
ΠžΠ±Π»Π°ΡΡ‚ΡŒ значСний– ∞
ΠœΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт
Нули, y = 0x = 1
Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, x = 0Π½Π΅Ρ‚
+ ∞
– ∞

ЗначСния ln x

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²Ρ‹Ρ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ ΠΈΠ· опрСдСлСния ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ОсновноС свойство Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² ΠΈ Π΅Π³ΠΎ слСдствия

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π·Π°ΠΌΠ΅Π½Ρ‹ основания

Π›ΡŽΠ±ΠΎΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π·Π°ΠΌΠ΅Π½Ρ‹ основания:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° этих Ρ„ΠΎΡ€ΠΌΡƒΠ» прСдставлСны Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ «Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ».

ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ функция

ΠžΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ для Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° являСтся экспонСнта.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ln x

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°:
.
ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΎΡ‚ модуля x :
.
ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ n-Π³ΠΎ порядка:
.
Π’Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ» > > >

Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»

ВыраТСния Ρ‡Π΅Ρ€Π΅Π· комплСксныС числа

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, ΠΊΠ°ΠΊ функция ΠΎΡ‚ комплСксного ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ, являСтся Π½Π΅ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² стСпСнной ряд

ΠŸΡ€ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ мСсто Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅:

Использованная Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°:
И.Н. Π‘Ρ€ΠΎΠ½ΡˆΡ‚Π΅ΠΉΠ½, К.А. БСмСндяСв, Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ для ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΎΠ² ΠΈ учащихся Π²Ρ‚ΡƒΠ·ΠΎΠ², Β«Π›Π°Π½ΡŒΒ», 2009.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ для любого ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ вСщСствСнного числа a ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ ΠΊΡ€ΠΈΠ²ΠΎΠΉ y = 1/x ΠΎΡ‚ 1 Π΄ΠΎ a. ΠŸΡ€ΠΎΡΡ‚ΠΎΡ‚Π° этого опрСдСлСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ согласуСтся со ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… примСняСтся Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, ΠΏΡ€ΠΈΠ²Π΅Π»Π° ΠΊ появлСнию названия Β«Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉΒ». Π­Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ Π½Π° комплСксныС числа, ΠΎ Ρ‡Ρ‘ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ сказано Π½ΠΈΠΆΠ΅.

Если Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΊΠ°ΠΊ Π²Π΅Ρ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ‚ΠΎ ΠΎΠ½Π° являСтся ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΊ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ тоТдСствам:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ0\,\!» border=»0″ /> Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Подобно всСм Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°ΠΌ, Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² слоТСниС:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, логарифмичСская функция прСдставляСт собой ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ умноТСния Π½Π° Π³Ρ€ΡƒΠΏΠΏΡƒ вСщСствСнных чисСл ΠΏΠΎ слоТСнию, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ для любого ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ основания, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚ 1, Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для e, Π½ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ для Π΄Ρ€ΡƒΠ³ΠΈΡ… оснований ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ постоянным ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΌ, ΠΈ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°. Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… нСизвСстныС ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π² качСствС показатСля стСпСни. НапримСр, Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для нахоТдСния постоянной распада для извСстного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° полураспада, ΠΈΠ»ΠΈ для нахоТдСния Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ распада Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ радиоактивности. Они ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… областях ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… Π½Π°ΡƒΠΊ, ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π² сфСрС финансов для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ слоТных ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ².

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ

ΠšΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΈ ΠΎΠ± обозначСниях

Русская (ΠΈ совСтская Π² Ρ†Π΅Π»ΠΎΠΌ) систСма

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ принято ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Β«ln(x)Β», Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 10 β€” Ρ‡Π΅Ρ€Π΅Π· Β«lg(x)Β», Π° ΠΏΡ€ΠΎΡ‡ΠΈΠ΅ основания принято ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ явно ΠΏΡ€ΠΈ символС Β«logΒ».

Π’ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ… ΠΏΠΎ дискрСтной ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, ΠΊΠΈΠ±Π΅Ρ€Π½Π΅Ρ‚ΠΈΠΊΠ΅, ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π°Π²Ρ‚ΠΎΡ€Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β«log(x)Β» для Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² ΠΏΠΎ основанию 2, Π½ΠΎ это соглашСниС Π½Π΅ являСтся общСпринятым ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ€Π°Π·ΡŠΡΡΠ½Π΅Π½ΠΈΡ Π»ΠΈΠ±ΠΎ Π² спискС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Π»ΠΈΠ±ΠΎ (ΠΏΡ€ΠΈ отсутствии Ρ‚Π°ΠΊΠΎΠ³ΠΎ списка) сноской ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠΌ использовании.

Англо-амСриканская систСма

НСкоторыС ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Ρ‹, Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ спСциалисты всСгда ΠΏΠΈΡˆΡƒΡ‚ Β«ln(x)Β» (ΠΈΠ»ΠΈ ΠΈΠ·Ρ€Π΅Π΄ΠΊΠ° Β«loge(x)Β»), ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Π² Π²ΠΈΠ΄Ρƒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, Π° запись Β«log(x)Β» Ρƒ Π½ΠΈΡ… ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ log10(x).

Π’ тСорСтичСской ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ ΠΊΡ€ΠΈΠΏΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Β«log(x)Β» ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ основанию 2 Β«log2(x)Β» (хотя часто вмСсто этого ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ просто lg(x)).

Π’Π΅Ρ…Π½ΠΈΠΊΠ°

Π’ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… языках программирования ΠΈ ΠΏΠ°ΠΊΠ΅Ρ‚Π°Ρ… ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ C, C++, SAS, MATLAB, Π€ΠΎΡ€Ρ‚Ρ€Π°Π½ ΠΈ BASIC функция Β«logΒ» ΠΈΠ»ΠΈ Β«LOGΒ» относится ΠΊ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΌΡƒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡƒ.

Π’ Ρ€ΡƒΡ‡Π½Ρ‹Ρ… ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π°Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ обозначаСтся ln, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ log слуТит для обозначСния Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΏΠΎ основанию 10.

ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ наша систСма счислСния ΠΈΠΌΠ΅Π΅Ρ‚ основаниС 10, Ρ‚ΠΎ это основаниС являСтся Π±ΠΎΠ»Π΅Π΅ Β«Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌΒ», Ρ‡Π΅ΠΌ основаниС e. Но матСматичСски число 10 Π½Π΅ являСтся особо Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ. Π•Π³ΠΎ использованиС скорСС связано с ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ, ΠΎΠ½ΠΎ являСтся ΠΎΠ±Ρ‰ΠΈΠΌ для ΠΌΠ½ΠΎΠ³ΠΈΡ… систСм счислСния, ΠΈ связано это, вСроятно, с числом ΠΏΠ°Π»ΡŒΡ†Π΅Π² Ρƒ людСй. [5] НСкоторыС ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ основывали свои систСмы счислСния Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… основаниях: 5, 8, 12, 20 ΠΈ 60. [6] [7] [8]

loge являСтся Β«Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌΒ» Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ автоматичСски ΠΈ появляСтся Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΎΡ‡Π΅Π½ΡŒ часто. НапримСр, рассмотрим ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ логарифмичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: [9]

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Если основаниС b Ρ€Π°Π²Π½ΠΎ e, Ρ‚ΠΎ производная Ρ€Π°Π²Π½Π° просто 1/x, Π° ΠΏΡ€ΠΈ x = 1 эта производная Ρ€Π°Π²Π½Π° 1. Π”Ρ€ΡƒΠ³ΠΈΠΌ обоснованиСм, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ основаниС e Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌ, являСтся Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ довольно просто ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… простого ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΈΠ»ΠΈ ряда Π’Π΅ΠΉΠ»ΠΎΡ€Π°, Ρ‡Π΅Π³ΠΎ нСльзя ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°Ρ….

Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΠ΅ обоснования Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π΅ связаны со счислСниСм. Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΅ΡΡ‚ΡŒ нСсколько простых рядов с Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°ΠΌΠΈ. ΠŸΡŒΠ΅Ρ‚Ρ€ΠΎ МСнголи ΠΈ Николай ΠœΠ΅Ρ€ΠΊΠ°Ρ‚ΠΎΡ€ Π½Π°Π·Ρ‹Π²Π°Π»ΠΈ ΠΈΡ… логарифмус натуралис нСсколько дСсятилСтий Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° ΠΡŒΡŽΡ‚ΠΎΠ½ ΠΈ Π›Π΅ΠΉΠ±Π½ΠΈΡ† Π½Π΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ΅ исчислСниС. [10]

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π€ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ ln(a) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° 1/x ΠΎΡ‚ 1 Π΄ΠΎ a, Ρ‚. Π΅. ΠΊΠ°ΠΊ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π­Ρ‚ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ удовлСтворяСт Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ свойству Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, допуская Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Число e ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΊΠ°ΠΊ СдинствСнноС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число a Ρ‚Π°ΠΊΠΎΠ΅, Ρ‡Ρ‚ΠΎ ln(a) = 1.

Или ΠΆΠ΅, Ссли ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция Π±Ρ‹Π»Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Ρ€Π°Π½ΡŒΡˆΠ΅ с использованиСм бСсконСчных рядов, Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ ΠΊΠ°ΠΊ обратная ΠΊ Π½Π΅ΠΉ функция, Ρ‚. Π΅. ln β€” это функция, такая Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Π΅ΡΡ‚ΡŒ всС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ вСщСствСнныС числа, Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ функция строго возрастаСт, Ρ‚ΠΎ это Ρ…ΠΎΡ€ΠΎΡˆΠΎ опрСдСлённая функция для всСх ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… x.

Бвойства

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, ряд Π’Π΅ΠΉΠ»ΠΎΡ€Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° Ρ€Π°Π²Π½Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

На основании этого ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ² ряд Π’Π΅ΠΉΠ»ΠΎΡ€Π° ΠΎΠΊΠΎΠ»ΠΎ 0, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΈΠ½ΠΎΠ³Π΄Π° рядом ΠœΠ΅Ρ€ΠΊΠ°Ρ‚ΠΎΡ€Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ прСобразования Π­ΠΉΠ»Π΅Ρ€Π° ряда ΠœΠ΅Ρ€ΠΊΠ°Ρ‚ΠΎΡ€ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ справСдливо для любого Ρ… большС 1 ΠΏΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π­Ρ‚ΠΎΡ‚ ряд ΠΏΠΎΡ…ΠΎΠΆ Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π‘ΡΠΉΠ»ΠΈβ€”Π‘ΠΎΡ€ΡƒΡΠΉΠ½Π°β€”ΠŸΠ»Π°Ρ„Ρ„Π°.

Π’Π°ΠΊΠΆΠ΅ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒβ€” это Π΅Ρ‘ собствСнная инвСрная функция, поэтому для получСния Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ числа y Π½ΡƒΠΆΠ½ΠΎ просто для x ΠΏΡ€ΠΈΡΠ²ΠΎΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ.

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π² ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π΄Π°Ρ‘Ρ‚ ΠΏΡ€ΠΎΡΡ‚ΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π²ΠΈΠ΄Π° g(x) = f ‘(x)/f(x): пСрвообразная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ g(x) ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ ln(|f(x)|). Π­Ρ‚ΠΎ подтвСрТдаСтся Ρ†Π΅ΠΏΠ½Ρ‹ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

НиТС Π΄Π°Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для g(x) = tan(x):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π³Π΄Π΅ C β€” ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Π°Ρ константа.

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ интСгрирования ΠΏΠΎ частям:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ЧислСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅

Для расчСта числСнного значСния Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° числа ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Π² ряд Π’Π΅ΠΉΠ»ΠΎΡ€Π° Π² Π²ΠΈΠ΄Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π»ΡƒΡ‡ΡˆΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ сходимости, ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ тоТдСством:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ y = (xβˆ’1)/(x+1) ΠΈ x > 0.

Для ln(x), Π³Π΄Π΅ x > 1, Ρ‡Π΅ΠΌ Π±Π»ΠΈΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x ΠΊ 1, Ρ‚Π΅ΠΌ быстрСС ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ сходимости. ВоТдСства, связанныС с Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для достиТСния Ρ†Π΅Π»ΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π­Ρ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ Π΅Ρ‰Ρ‘ Π΄ΠΎ появлСния ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠ², для Ρ‡Π΅Π³ΠΎ использовались числовыС Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡŒ манипуляции, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ Π²Ρ‹ΡˆΠ΅ΠΎΠΏΠΈΡΠ°Π½Π½Ρ‹ΠΌ.

Высокая Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ

Для вычислСния Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° с большим количСством Ρ†ΠΈΡ„Ρ€ точности ряд Π’Π΅ΠΉΠ»ΠΎΡ€Π° Π½Π΅ являСтся эффСктивным, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΅Π³ΠΎ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ мСдлСнная. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ являСтся использованиС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΡŒΡŽΡ‚ΠΎΠ½Π°, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, ряд ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ сходится быстрСС.

ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ для ΠΎΡ‡Π΅Π½ΡŒ высокой точности расчёта являСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°: [12] [13]

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π³Π΄Π΅ M ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π°Ρ€ΠΈΡ„ΠΌΠ΅Ρ‚ΠΈΠΊΠΎ-гСомСтричСскоС срСднСС 1 ΠΈ 4/s, ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ2^

,» border=»0″ />

m Π²Ρ‹Π±Ρ€Π°Π½ΠΎ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ p Π·Π½Π°ΠΊΠΎΠ² точности достигаСтся. (Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 8 для m Π²ΠΏΠΎΠ»Π½Π΅ достаточно.) Π’ самом Π΄Π΅Π»Π΅, Ссли ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ этот ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° инвСрсия ΠΡŒΡŽΡ‚ΠΎΠ½Π° Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° для эффСктивного вычислСния ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. (ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρ‹ ln 2 ΠΈ ΠΏΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вычислСны Π΄ΠΎ ΠΆΠ΅Π»Π°Π΅ΠΌΠΎΠΉ точности, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ любой ΠΈΠ· извСстных быстро сходящихся рядов.)

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² (с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Ρ€ΠΈΡ„ΠΌΠ΅Ρ‚ΠΈΠΊΠΎ-гСомСтричСского срСднСго) Ρ€Π°Π²Π½Π° O(M(n) ln n). Π—Π΄Π΅ΡΡŒ n β€” число Ρ†ΠΈΡ„Ρ€ точности, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ†Π΅Π½Π΅Π½, Π° M(n) β€” Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ умноТСния Π΄Π²ΡƒΡ… n-Π·Π½Π°Ρ‡Π½Ρ‹Ρ… чисСл.

НСпрСрывныС Π΄Ρ€ΠΎΠ±ΠΈ

Π₯отя для прСдставлСния Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ простыС Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, Π½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ нСсколько ΠΎΠ±ΠΎΠ±Ρ‰Ρ‘Π½Π½Ρ‹Ρ… Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ, Π² Ρ‚ΠΎΠΌ числС:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ Π½Π° всСй комплСксной плоскости, ΠΈ Π΄Π°ΠΆΠ΅ ΠΏΡ€ΠΈ этом ΠΎΠ½ являСтся ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹ΠΌ β€” любой комплСксный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π°ΠΌΠ΅Π½Ρ‘Π½ Π½Π° «эквивалСнтный» Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, Π΄ΠΎΠ±Π°Π²ΠΈΠ² любоС Ρ†Π΅Π»ΠΎΠ΅ число, ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ 2Ο€i. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° срСзС комплСксной плоскости. НапримСр, ln i = 1/2 Ο€i ΠΈΠ»ΠΈ 5/2 Ο€i ΠΈΠ»ΠΈ βˆ’3/2 Ο€i, ΠΈ Ρ‚.Π΄., ΠΈ хотя i 4 = 1, 4 log i ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΊΠ°ΠΊ 2Ο€i, ΠΈΠ»ΠΈ 10Ο€i ΠΈΠ»ΠΈ βˆ’6 Ο€i, ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ. Как ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ. Бвойства Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ². ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

МногиС школьники ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ слоТной Ρ‚Π΅ΠΌΠΎΠΉ Π² курсС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Но Ссли Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ, ΠΎΡ‚ простого ΠΊ слоТному, Ρ‚ΠΎ Π½Π° Π•Π“Π­ Π²Ρ‹ Π½Π΅ станСтС ΠΈΡ… ΠΎΠΏΠ°ΡΠ°Ρ‚ΡŒΡΡ.

Часто Ρƒ ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡƒΡ‚Π°Π½ΠΈΡ†Π°, Π³Π΄Π΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚, Π° Π³Π΄Π΅ основаниС Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°. И Ρ‡Ρ‚ΠΎ ΠΆΠ΅ Π½ΡƒΠΆΠ½ΠΎ возвСсти Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ этот Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ.

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ ΠΎΡ‚ΠΊΡ€ΠΎΠ΅ΠΌ сСкрСт, ΠΊΠ°ΠΊ Π»Π΅Π³Ρ‡Π΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.

Π˜Ρ‚Π°ΠΊ, Π΄Π°Π²Π°ΠΉΡ‚Π΅ Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΈ ΠΊΠ°ΠΊ Π΅Π³ΠΎ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ³Π΄Π΅ a – это основаниС Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°,

b – это Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° приравняСм Π΅Π³ΠΎ ΠΊ X.Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠΈ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Π΅ΠΌ Π²Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ—Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ основаниС (ΠΎΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΎ красным) возводится Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ Π»Π΅Π³Ρ‡Π΅, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ – основаниС всСгда остаСтся Π²Π½ΠΈΠ·Ρƒ (ΠΈ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ, ΠΈ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ a Π²Π½ΠΈΠ·Ρƒ)!

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΡΡ‚ΡŒ Π΅Π³ΠΎ ΠΊ X ΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ, описанным Π²Ρ‹ΡˆΠ΅:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ Π² ΠΊΠ°ΠΊΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π½ΡƒΠΆΠ½ΠΎ возвСсти 2, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ 8? ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ ΠΆΠ΅ Π² Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ, Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ•Ρ‰Π΅ Ρ€Π°Π· ΠΎΠ±Ρ€Π°Ρ‰Π°ΡŽ вашС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ основаниС (Π² нашСм случаС это – 2) всСгда находится Π²Π½ΠΈΠ·Ρƒ ΠΈ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΎ возводится Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ со ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ

Для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²Π²Π΅Π΄Π΅Π½Ρ‹ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ обозначСния. Π­Ρ‚ΠΎ связано с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ особСнно часто. К Ρ‚Π°ΠΊΠΈΠΌ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°ΠΌ относятся дСсятичный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΈ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ. Для этих Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² справСдливы всС ΠΏΡ€Π°Π²ΠΈΠ»Π°, Ρ‡Ρ‚ΠΎ ΠΈ для ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ².

ДСсятичный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ

ДСсятичный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ обозначаСтся lg ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ основаниС 10, Ρ‚.Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ дСсятичный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ, Π½ΡƒΠΆΠ½ΠΎ 10 возвСсти Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ X.

НапримСр, вычислим lg100Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ обозначаСтся ln ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ основаниС e, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ Π½ΡƒΠΆΠ½ΠΎ число Π΅ возвСсти Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ x. НСкоторыС ΠΈΠ· вас спросят, Ρ‡Ρ‚ΠΎ это Π·Π° число Ρ‚Π°ΠΊΠΎΠ΅ Π΅? Число Π΅ – это ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚.Π΅. Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. Π΅ = 2,718281…

БСйчас Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒ, Π·Π°Ρ‡Π΅ΠΌ это число Π½ΡƒΠΆΠ½ΠΎ, просто Π·Π°ΠΏΠΎΠΌΠ½ΠΈΠΌ, Ρ‡Ρ‚ΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

И Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ, Π½ΠΎ для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ основными свойствами Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ². Π”Π°Π½Π½Ρ‹Π΅ свойства ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΡƒΡ‡Π΅Π½ΠΈΠΊΡƒ! Π‘Π΅Π· знания этих свойств Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π½ΠΈ ΠΎΠ΄Π½Ρƒ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½ΡƒΡŽ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ. Π’ΠΎΡ‚ эти свойства:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π‘ΠΎΠ²Π΅Ρ‚ – Ρ‚Ρ€Π΅Π½ΠΈΡ€ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ эти свойства Π² ΠΎΠ±Π΅ стороны, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠ°ΠΊ слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ, Ρ‚Π°ΠΊ ΠΈ справа Π½Π°Π»Π΅Π²ΠΎ!

Рассмотрим свойства Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ….

ЛогарифмичСский ноль ΠΈ логарифмичСская Π΅Π΄ΠΈΠ½ΠΈΡ†Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π­Ρ‚ΠΎ слСдствия ΠΈΠ· опрСдСлСния Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°. И ΠΈΡ… Π½ΡƒΠΆΠ½ΠΎ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ. Π­Ρ‚ΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ свойства Π½Π΅Ρ€Π΅Π΄ΠΊΠΎ вводят ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² Π² ступор.

Π—Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΎΡ‚ a ΠΏΠΎ основанию Π° всСгда Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅:

loga a = 1 – это логарифмичСская Π΅Π΄ΠΈΠ½ΠΈΡ†Π°.

Если ΠΆΠ΅ Π² Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π΅ стоит Π΅Π΄ΠΈΠ½ΠΈΡ†Π°, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ всСгда Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ нСзависимо ΠΎΡ‚ основания, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ a 0 = 1:

loga 1 = 0 – логарифмичСский ноль.

ОсновноС логарифмичСскоС тоТдСство

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ число m становится ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ, которая стоит Π² Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π΅. Π”Π°Π½Π½ΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹ΠΌ. НСкоторыС выраТСния ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этого тоТдСства.

Вторая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎ сути являСтся просто ΠΏΠ΅Ρ€Π΅Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ тоТдСства Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅:

НСобходимо Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ‘Π½Π°Ρ‡Π°Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ’Π΅Ρ€Π½Π΅ΠΌΡΡ ΠΊ исходному Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ умноТСния стСпСнСй с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ основаниСм:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ основноС логарифмичСскоС тоТдСство ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π‘ΡƒΠΌΠΌΠ° Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ². Π Π°Π·Π½ΠΈΡ†Π° Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²

Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ основаниями ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°Ρ‚ΡŒ:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹ с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ основаниями ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ исходныС выраТСния состояли ΠΈΠ· Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ, Π° ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ свойств Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈΡΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ числа. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠΌ, Ρ‡Ρ‚ΠΎ основныС свойства Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ!

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ суммы ΠΈ разности Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π²Π΅Ρ€Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ основаниями! Если основания Ρ€Π°Π·Π½Ρ‹Π΅, Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ свойства ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ нСльзя!

ВынСсСниС показатСля стСпСни ΠΈΠ· Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°

ВынСсСниС показатСля стСпСни ΠΈΠ· Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ основанию

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠšΠΎΠ³Π΄Π° ΠΌΡ‹ Ρ€Π°Π·Π±ΠΈΡ€Π°Π»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ суммы ΠΈ разности Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ², Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Ρ‰Π°Π»ΠΈ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ основания Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈ этом ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. А Ρ‡Ρ‚ΠΎ ΠΆΠ΅ Π΄Π΅Π»Π°Ρ‚ΡŒ, Ссли основания Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Ρ€Π°Π·Π½Ρ‹Π΅? Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ свойством ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ основанию.

Π’Π°ΠΊΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‡Π°Ρ‰Π΅ всСго Π½ΡƒΠΆΠ½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ логарифмичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ нСравСнств.

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅.

НСобходимо Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΎΠ³ΠΎ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ”Π»Ρ Π½Π°Ρ‡Π°Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ свойства вынСсСния показатСля стСпСни ΠΈΠ· Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ основанию для Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² исходноС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

10 ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ

1. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ2. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ3. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ4. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ5. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ6. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ”Π»Ρ этого приравняСм Π΅Π³ΠΎ ΠΊ Π₯:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ’ΠΎΠ³Π΄Π° ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ7. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ нашС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ’Π΅ΠΏΠ΅Ρ€ΡŒ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ свойством вынСсСния показатСля стСпСни ΠΈΠ· Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ8. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ’Π°ΠΊ ΠΊΠ°ΠΊ основания Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅, Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ свойством разности Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ²:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ9. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠ’Π°ΠΊ ΠΊΠ°ΠΊ основания Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Ρ€Π°Π·Π½Ρ‹Π΅, ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ свойство суммы Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² нСльзя. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ€Π΅ΡˆΠ°Π΅ΠΌ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ значСния Π² исходноС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

10. Найти Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСнияЧто Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΠžΠ±Ρ€Π°Ρ‰Π°Π΅ΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ – это Π½Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ². Π£ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΏΠΎ основанию 4 ΠΏΠΎΠ΄Π»ΠΎΠ³Π°Ρ€ΠΈΡ„Π½Ρ‹ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ являСтся log216. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ сначала Π½Π°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ log216, Π° Π·Π°Ρ‚Π΅ΠΌ подставим ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π² log4:Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ln Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ

НадСюсь, Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈΡΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *