Что такое json в python

№23 Модуль JSON / Уроки по Python для начинающих

JSON является синтаксисом для хранения и обмена данными. JSON — это текст, написанный в стиле объекта JavaScript.

JSON в Python

Конвертация из JSON в Python

Конвертировать из Python в JSON

Вы можете преобразовать следующие типов объекты Python в строки JSON:

Конвертируем объекты Python в строки JSON и выведите значения:

Когда вы конвертируете из Python в JSON, объекты Python преобразуются в эквивалент JSON:

PythonJSON
dictObject
listArray
tupleArray
strString
intNumber
floatNumber
Truetrue
Falsefalse
Nonenull

Конвертируйте объект Python, содержащий все типы конвертируемых данных:

Как конвертировать кириллицу

Если в данных Python есть символы кириллицы, метод json.dumps() преобразует их с кодировкой по умолчанию. Что бы сохранить кириллицу используйте параметр ensure_ascii=False

Форматирование результата

В приведенном выше примере выводится строка JSON, но читать ее не так просто, без отступов и переносов строк.

У метода json.dumps() есть параметры, облегчающие чтение результата.
Используем параметр indent для определения количества отступов:

Источник

Формат данных JSON в Python

Краткое руководство по использованию JSON в Python

JSON (JavaScript Object Notation) это легковесный формат обмена данными. Людям его легко читать и вести в нем записи, а компьютеры запросто справляются с его синтаксическим анализом и генерацией.

JSON основан на языке программирования JavaScript. Но этот текстовый формат не зависит от языка и среди прочих может использоваться в Python и Perl. В основном его применяют для передачи данных между сервером и веб-приложением.

JSON построен на двух структурах:

JSON в Python

В Python есть ряд пакетов, поддерживающих JSON, в частности metamagic.json, jyson, simplejson, Yajl-Py, ultrajson, и json. В этом руководстве мы будем использовать json, имеющий «родную» поддержку в Python. Для проверки данных JSON мы можем воспользоваться этим сайтом, предоставляющим JSON-линтер.

Ниже приведен пример записи JSON. Как видим, представление данных очень похоже на словари Python.

Конвертируем JSON в объекты Python

Конвертируем объекты Python в JSON

Теперь давайте сравним типы данных в Python и JSON.

PythonJSON
dictObject
listArray
tupleArray
strString
intNumber
floatNumber
Truetrue
Falsefalse
Nonenull

Ниже мы покажем, как сконвертировать некоторые объекты Python в типы данных JSON.

Кортеж Python — в массив JSON

Список Python — в массив JSON

Строка Python — в строку JSON

Булевы значения Python — в булевы значения JSON

Запись в файл JSON

Чтение файлов JSON

json.load vs json.loads

json.load используют для загрузки файла, а json.loads – для загрузки строки (loads расшифровывается как «load string»).

json.dump vs json.dumps

Аналогично, json.dump применяется, если нужно сохранить JSON в файл, а json.dumps (dump string) – если данные JSON нам нужны в виде строки для парсинга или вывода.

Работа с данными JSON в Data Science

Ограничения имплементации

Процесс кодирования в JSON называется сериализацией, а декодирования – десериализацией. Некоторые реализации десериализаторов имеют ограничения на:

Впрочем, подобные ограничения связаны только с типами данных Python и работой самого интерпретатора Python.

Формат JSON в разработке API

Эта программа отправит в браузер что-то вроде следующего:

Источник

Работа с данными в формате JSON в Python

Что такое json в python. Смотреть фото Что такое json в python. Смотреть картинку Что такое json в python. Картинка про Что такое json в python. Фото Что такое json в python

Перевод статьи Working With JSON Data in Python.
Начиная с момента своего создания JSON быстро стал стандартом де-факто для обмена данными между приложениями, а также их частями. И скорее всего вы читаете эту статью потому, что вам необходимо куда либо передать/принять данные или возможно вы через API своего приложения обрабатываете информацию в формате JSON, а затем сохраняете её. Так или иначе, но вы наконец добрались до этого непонятного JSON и теперь вам необходимо обработать данные в этом формате с помощью Python. К счастью это достаточно простая задача, и как в большинстве подобных случаев Python делает ее выполнение легким.

Итак, мы собираемся использовать JSON для хранения и обмена данными. JSON — это не что иное, как стандартизованный формат, который сообщество разработчиков уже достаточно давно использует для передачи и хранения данных. Имейте в виду, что JSON — не единственное решение, использующееся для подобного рода задач, но вероятно только XML и YAML являются единственными альтернативами о которых стоит упомянуть в первую очередь.

(Очень) Краткое введение в JSON

JavaScript Object Notation (JSON) создавался под влиянием парадигм языка JavaScript и связан с ним схожим синтаксисом описания объектного литерала. Существует отличный сайт, который введет вас в курс дела. Тем не менее JSON уже давно отделился от языка Javascript и существует как собственный стандарт, поэтому в этой статье мы можем с удовольствием избежать обсуждения особенностей программирования на JavaScript. В конечном итоге сообщество разработчиков в целом приняло JSON, так как его легко создавать, а также понимать как людям так и машинам.

Внимание, это JSON!

Файлы в формате JSON доступны для чтения и записи средствами всех языков программирования Cи-стиля, а Python как раз является таковым! Ниже приводится фрагмент кода, содержащий личные данные пользователя в виде литерала объекта и закодированного в формате JSON.

Как не трудно заметить, JSON поддерживает примитивные типы данных, такие как строки и числа, а также сложные: списки и объекты с произвольной вложенностью. Синтаксис представленного выше кода схож с синтаксисом словаря Python, то есть является универсальной нотацией для описания объектов.

Python изначально поддерживает JSON!

Изначально Python поставляется со стандартным (встроенным) модулем json для кодирования и декодирования данных в формате JSON. Для этого просто вставьте в начале вашего файла с кодом программы следующие инструкции:

Основные термины

Процесс кодирования JSON называется сериализацией (serialization). Этот термин обозначает преобразование данных в линейную последовательность байтов для хранения на диске или передачи по сети. Интересуясь материалами по этой тематике, вы также могли слышать термин «маршалинг» (marshaling), но это уже тема для отдельной статьи.

Соответственно, десериализация (deserialization) является обратным процессом, а технически декодированием данных из формата JSON в структуру данных в памяти.

На самом деле проще думать об этих двух взаимообратимых процессах как об обыкновенном чтении и записи данных: кодирование предназначено для записи данных на диск (или передачи по сети), а декодирование — для чтения данных в память и последующей обработки.

Сериализация JSON

Модуль json предоставляет удобный метод dump() для записи данных в файл. Существует также метод dumps() для записи данных в обычную строку. Типы данных Python кодируются в формат JSON в соответствии с интуитивно понятными правилами преобразования, представленными в виде таблице ниже.

PythonJSON
dictobject
list,tuplearray
strstring
int, long, floatnumber
Truetrue
Falsefalse
Nonenull

Пример простой процедуры сериализации данных

Теперь представим, что мы работаем в памяти с объектом следующего вида:

Обратите внимание, на то что метод dump() принимает два аргумента: объект данных, подлежащий сериализации и файлоподобный объект, в который они затем будут записаны после кодирования.

Некоторые полезные именованные аргументы

Напомним JSON должен быть легко читаем для людей. Но что если наши данные будут упакованы в одну строку без отступов и разделения по отдельным строкам. Кроме всего этого, у вас вероятно имеется свой стиль форматирования (styleguide) или же вам проще читать код отформатированный по вашим правилам.

ПРИМЕЧАНИЕ. Оба метода dump() и dumps() используют одни и те же именованные аргументы.

Десериализация JSON

JSONPython
objectdict
arraylist
stringstr
number (int)int
number (real)float
trueTrue
falseFalse
nullNone

Технически это преобразование не является в точности обратным к таблице для сериализации данных, рассмотренной нами выше. Это означает, что если вы кодируете объект в формат JSON, а затем декодируете его обратно, то вы можете получить уже не тот объект, каким он был изначально. Простым иллюстрирующим этот факт примером будет кодирование данных с типа кортеж tuple и получение после декодирования данных с типа список list :

Простой пример десериализации данных

Представим теперь, что у вас есть данные, хранящиеся на диске в виде файла, которые вы хотели бы обрабатывать в памяти. Как в задаче выше вы также можете использовать диспетчер контекста, но на этот раз для того, чтобы открыть существующий файл data_file.json в режиме чтения:

Здесь все довольно просто, но имейте в виду, что результат выполнения этого кода будет возвращать результат декодирования, в соответствии с нашей таблицей преобразования типов данных. Об этом важно помнить если вы загружаете из файла данные, состав которых вам заранее неизвестен.

Пример (как бы) из реальной жизни

Для демонстрации нашего «реального» примера мы будем использовать online-сервис JSONPlaceholder. Он представляет собой удаленный источник данных в формате JSON, получаемых по сети по запросу, и могут использоваться для отладки приложений. Вначале создадим файл сценария с именем scratch.py или под любым другим именем. Нам необходимо будет сформировать запрос request к служебному API JSONPlaceholder, для этого мы будем использовать модуль requests. Просто добавьте инструкции импорта в начало файла:

Вы также можете просмотреть содержимое входных данных с помощью браузера, перейдя во входную точку сервиса по следующей ссылке — TODO:

Теперь мы можем манипулировать данными прочитанными из файла в формате JSON и декодированными как с обыкновенным объектом Python. Если мы запустим следующие инструкции в консоли, то получим:

Кодирование и декодирование пользовательских объектов Python

Рассмотрим следующий пример и затем ответим на вопрос. Что произойдёт если мы попытаемся сериализовать класс Elf из приложения Dungeons & Dragons, фрагмент кода которого представлен ниже?

Не удивительно, но Python пожалуется, что Elf не может быть сериализован (not serializable):

И хотя модуль json может обрабатывать большинство встроенных типов данных Python, но по умолчанию он не понимает, как кодировать сложные пользовательские типы данных. Со стороны наш код похож на попытку поместить квадратный штифт в круглое отверстие. Как решать подобные задачи рассмотрим ниже.

Упрощение структур данных

Как работать со сложными структурами данных? Вы можете попытаться кодировать и декодировать JSON вручную контролируя весь процесс, но есть более изящное решение, которое сэкономит ваше время. Вместо того, чтобы попытаться напрямую перейти от пользовательского типа данных к формату JSON с неизвестным результатом, вы можете сделать это через следующий промежуточный шаг.

Все, что вам нужно сделать, это представить ваши данные с точки зрения встроенных в Python (нативных) типов данных, которые модуль json отлично понимает. По сути, вы должны перевести сложный объект в более простое представление, которое затем модуль json трансформирует в JSON. Это похоже на транзитивное свойство отношений элементов в математике: если A = B и B = C, то A = C.

Чтобы опробовать этот прием, нам понадобится любой сложный объект для кодирования. Для примера вы можете использовать любой пользовательский класс, который вам нравится. Но мы используем для этого встроенный в Python тип complex, который применяется для представления комплексных чисел. И по умолчанию он в принципе не сериализуем.

Теперь необходимо задать себе очень важный вопрос. Каков минимальный объем информации, нам необходим для воссоздания объекта? В случае комплексных чисел вам нужно знать значения реальных и мнимых частей числа, которые вы можете получить как атрибуты объекта типа complex:

После передачи полученных значений в конструктор complex() оператор сравнения __eq__ вернёт нам значение True :

Разбиение пользовательских типов данных до отдельных составляющих, состоящих из значений простых базовых типов, имеет решающее значение для успешного результата работы процессов сериализации и десериализации.

Кодирование пользовательских типов данных

Почему же мы кодировали комплексное число как кортеж (tuple)? Хороший вопрос. Это, безусловно, не единственный и не лучший выбор. На самом деле, это не очень хорошее представление данных, в особенности если захотите позже декодировать полученный результат. И вы вскоре убедитесь в этом. Другой общий подход заключается в применении подкласса стандартного класса JSONEncoder и переопределении его метода default() :

Декодирование пользовательских типов данных

Что же нам неизвестно ещё? В рассмотренном нами случае отсутствуют метаданные или информация о типе декодируемых данных. Теперь еще раз зададим себе вопрос: Каков минимальный объем информации, который необходим и достаточен для восстановления этого объекта?

Модуль json ожидает, что все пользовательские типы данных будут отображаться как обычные объекты. Создадим файл JSON complex_data.json и добавим туда объект, представляющий собой комплексное число:

Ключ __complex__ — это метаданные, о которых мы говорили выше. На самом деле не важно с каким значением он ассоциирован. Чтобы этот маленький хак работал, все, что вам нужно это проверить существует ли этот ключ:

Если ваш код не содержит ошибок, то вы получите список объектов типа complex :

Все готово

Поздравляю теперь вы можете использовать всю мощь формата JSON для реализации ваших приложений на языке Python.

Хотя примеры которыми мы рассмотрели, безусловно, чрезмерно упрощены, но иллюстрируют основы процесса работы с форматом данных JSON. Информация изложенная в этой статье поможет вам решить следующие задачи:

Рассмотрение особенностей использования стандартного модуля json упростит вам изучение других модулей Python, использующихся для сериализации данных: pickle и marshal.

Удачи вам в дальнейшем изучении языка Python!

Источник

Работа с файлами в формате JSON¶

JSON по синтаксису очень похож на Python и достаточно удобен для восприятия.

Как и в случае с CSV, в Python есть модуль, который позволяет легко записывать и читать данные в формате JSON.

Чтение¶

Для чтения в модуле json есть два метода:

json.load ¶

Чтение файла в формате JSON в объект Python (файл json_read_load.py):

json.loads ¶

Считывание строки в формате JSON в объект Python (файл json_read_loads.py):

Результат будет аналогичен предыдущему выводу.

Запись¶

Запись файла в формате JSON также осуществляется достаточно легко.

Для записи информации в формате JSON в модуле json также два метода:

json.dumps ¶

Преобразование объекта в строку в формате JSON (json_write_dumps.py):

Метод json.dumps подходит для ситуаций, когда надо вернуть строку в формате JSON. Например, чтобы передать ее API.

json.dump ¶

Запись объекта Python в файл в формате JSON (файл json_write_dump.py):

Когда нужно записать информацию в формате JSON в файл, лучше использовать метод dump.

Дополнительные параметры методов записи¶

Методам dump и dumps можно передавать дополнительные параметры для управления форматом вывода.

По умолчанию эти методы записывают информацию в компактном представлении. Как правило, когда данные используются другими программами, визуальное представление данных не важно. Если же данные в файле нужно будет считать человеку, такой формат не очень удобно воспринимать.

К счастью, модуль json позволяет управлять подобными вещами.

Передав дополнительные параметры методу dump (или методу dumps), можно получить более удобный для чтения вывод (файл json_write_indent.py):

Теперь содержимое файла sw_templates.json выглядит так:

Изменение типа данных¶

Еще один важный аспект преобразования данных в формат JSON: данные не всегда будут того же типа, что исходные данные в Python.

Например, кортежи при записи в JSON превращаются в списки:

Так происходит из-за того, что в JSON используются другие типы данных и не для всех типов данных Python есть соответствия.

Таблица конвертации данных Python в JSON:

PythonJSON
dictobject
list, tuplearray
strstring
int, floatnumber
Truetrue
Falsefalse
Nonenull

Таблица конвертации JSON в данные Python:

JSONPython
objectdict
arraylist
stringstr
number (int)int
number (real)float
trueTrue
falseFalse
nullNone

Ограничение по типам данных¶

С помощью дополнительного параметра можно игнорировать подобные ключи:

Кроме того, в JSON ключами словаря могут быть только строки. Но, если в словаре Python использовались числа, ошибки не будет. Вместо этого выполнится конвертация чисел в строки:

Источник

JSON (JavaScript Object Notation-формат передачи данных), определен стандартом RFC 7159 (который вытекает из устаревшей версии RFC 4627) и ECMA-404, легким текстовым форматом обмена данных, основанным на синтаксисе литералов объекта JavaScript (хотя он и не является подгруппой JavaScript).

json предоставляет API, знакомый пользователям стандартных библиотечных модулей marshal и pickle.

Преобразование базовых объектов в Python в json:

Декодирование JSON, преобразование json в объект Python:

Специализированное декодирование объектов в JSON:

Рекомендуется использование json.tool для проверки и красивого вывода:

JSON является подмножеством YAML 1.2 JSON создан с помощью стандартных настроек этого модуля и также является подмножеством YAML 1.0 and 1.1. Этот модуль может использоваться в качестве сериализатора YAML.

До Python 3.7 порядок ключей словаря не сохранялся, поэтому входные и выходные данные, как правило, отличались. Начиная с Python 3.7, порядок ключей стал сохраняться, поэтому больше нет необходимости использовать collections.OrderedDict для парсинга JSON.

Основные методы

Метод json dump

Когда check_circular=False (по умолчанию: True ), тогда проверка циклических ссылок для типов контейнера будет пропущена, а такие ссылки будут вызывать OverflowError (или ошибку серьёзнее).

Изменения в версии 3.2: Допускаются строки для отступа в дополнение к целым числам.

Если sort_keys=True (по умолчанию: False ), ключи выводимого словаря будут отсортированы.

Метод json dumps

Метод json load

Метод json loads

Кодировщики и декодировщики

JSONDecoder

Класс json.JSONDecoder (*, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, strict=True, object_pairs_hook=None)

Простой декодер JSON. При декодировании выполняет следующие преобразования:

JSONPython
objectdict
arraylist
stringstr
number (int)int
number (real)float
trueTrue
falseFalse
nullNone

decode(s)
Возвращает представление s в Python ( str — содержащий документ JSON). JSONDecodeError будет вызвана, если документ JSON не валидный (или не действительный).

JSONEncoder

Класс json.JSONEncoder (*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

Расширяемый кодировщик JSON для структур данных Python.
Поддерживает следующие типы данных и объекты по умолчанию:

PythonJSON
dictobject
list, tuplearray
strstring
int, floatnumber
Truetrue
Falsefalse
Nonenull

Если check_circular=True (по умолчанию), тогда списки, словари и самостоятельно закодированные объекты будут проверяться на циклические ссылки во время кодировки, чтобы предотвратить бесконечную рекурсию (что вызовет OverflowError ). В другом случае, такая проверка не выполняется.

Если sort_keys=True (по умолчанию: False ), выводимый словарь будет отсортирован по именам ключей; это полезно для регрессивного тестирования, чтобы сравнивать сериализацию JSON ежедневно.

default(o)
Внедрите этот метод в подкласс таким образом, чтобы он возвращал сериализуемый объект для o или вызывал базовую реализацию (для повышения TypeError ).

Например, чтобы поддерживать произвольные итераторы, вы можете реализовать default следующим образом:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *